Study confirms 'gusty winds' in space turbulence

Study confirms 'gusty winds' in space turbulence
A solar prominence erupts into the sun's atmosphere, or corona. Credit: NASA.

A research team led by the University of Iowa reports to have directly measured a kind of turbulence that occurs in space plasma for the first time in the laboratory.

Imagine riding in an airplane as the plane is jolted back and forth by gusts of wind that you can't prove exist but are there nonetheless.

Similar turbulence exists in space, and a research team led by the University of Iowa reports to have directly measured it for the first time in the laboratory.

"Turbulence is not restricted to environments here on Earth, but also arises pervasively throughout the solar system and beyond, driving chaotic motions in the ionized gas, or plasma, that fills the universe," says Gregory Howes, assistant professor of physics and astronomy at the UI and lead author of the paper to be published Dec. 17 in the online edition of Physical Review Letters, the journal of the American Physical Society. "It is thought to play a key role in heating the atmosphere of the sun, the , to temperatures of a million degrees Celsius, nearly a thousand times hotter than the surface of the sun."

He adds: "Turbulence also regulates the formation of the stars throughout the galaxy, determines the radiation emitted from the super at the center of our galaxy and mediates the effects that has on the Earth."

One well-known source of gusty space winds are the violent emissions of charged particles from the sun, known as coronal . These solar-powered winds can adversely affect satellite communications, air travel and the . On the positive side, also can also lead to mesmerizing auroras at the north and south poles on Earth.

Howes notes that unlike gusts of wind on the surface of the Earth, turbulent motions in space and astrophysical systems are governed by Alfven waves, which are traveling disturbances of the plasma and magnetic field. Nonlinear interactions between Alfven waves traveling up and down the magnetic field—such as two magnetic waves colliding to create a third wave—are a fundamental building block of plasma turbulence, and modern theories of astrophysical turbulence are based on this underlying concept, he says.

"We have presented the first experimental measurement in a laboratory plasma of the nonlinear interaction between counter-propagating Alfven waves, the fundamental building block of astrophysical turbulence," Howes says.


Explore further

Magnetic turbulence trumps collisions to heat solar wind

More information: Preprints of the abstract and paper, "Toward Astrophysical Turbulence in the Laboratory," (PDF download) are available at: lanl.arxiv.org/abs/1210.4568
Journal information: Physical Review Letters

Provided by University of Iowa
Citation: Study confirms 'gusty winds' in space turbulence (2012, December 17) retrieved 22 August 2019 from https://phys.org/news/2012-12-gusty-space-turbulence.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Dec 17, 2012
Finally! About time the obvious was recognized 'as is' (space plasmas, turbulence, flows, and Alfven Waves and Z-pinch effects etc), rather than being misinterpreted via the usual assumptive theories which miss the bleedin' obvious. Kudos, guys!

Dec 17, 2012
I cant wait until they begin discovering polar particle/energy jets sporadically coming off the sun. Theyre There sometimes we just dont know it yet

Dec 17, 2012
So the turbulent "winds" are actually fluctuations in electric currents (moving charges)? The same could be said for planets as well I would suppose.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more