Symmetry breaking during flapping generates lift

October 22, 2012 by Lisa Zyga, feature
A translucent sea slug called Clione Antarctica, or “sea angel,” moves by flapping its wings. Its cilia can either be motile or non-motile, but when they're non-motile they may still contribute to the animal’s locomotion through the symmetry breaking mechanism described in the new study. Image credit: NOAA

(—A small, translucent sea slug called Clione antarctica swims through the cold waters near the polar regions by flapping its wings. At the same time, tiny cilia that circle the sea slug's body in three bands may flap passively and assist in movement. In this mode, the cilia are inert – unable to move themselves – and scientists don't fully understand what role they play in the sea slug's locomotion. Now in a new study, scientists have found a clue to how passive flapping elements generate movement: through a process commonly found in many areas of science called symmetry breaking.

The University of Genova researchers, Shervin Bagheri (now at KTH Mechanics in Stockholm, Sweden), Andrea Mazzino (also at the INFN and CINFAI Consortium in Genova, Italy), and Alessandro Bottaro, have published their study on how breaking of a flapping filament on a moving in air or water can generate lift without increasing drag. Their study is published in a recent issue of .

"We demonstrate that a short flexible filament attached on the body flaps at an angle of 20-40 degrees either to the right or left of the incoming stream of flow, thus inducing a net force on the body which may move transversely at no additional cost," Bagheri tod "This discovery is an example of how the mere presence of on animals contributes to locomotion via the interaction with the surrounding , without any effort whatsoever from the animal."

In previous studies, researchers have modeled what happens when a two-dimensional circular cylinder is placed in a stream of fluid flowing from its front to its rear, and found that the flow behind it consists of swirling or eddies. Importantly, the upper eddies above the cylinder are mirror images of the lower eddies beneath it – that is, the vortices have an up-down symmetry. When placing an elastic filament (which in real life might take the form of cilia, feathers, scales, or other passive appendage) in the stream alone, the same thing happens: the up-down symmetry of the eddies is preserved as the filament undergoes a regular flapping motion.

In the presence of a flow, a passive filament attached to a cylindrical body will passively flap in an asymmetric way: red lines depict the filament position at different times. The broken symmetry may explain how the passive flapping filament generates lift and torque in the body. Image credit: Bagheri, et al.

Here, the researchers investigated what happens when the two symmetry-preserving systems interact. When they attached a short filament to the rear of a cylinder, they found that the filament passively oscillates in either the upper or lower part of the cylinder's wake. As a result, symmetry breaking occurs, since the upper eddies and lower are no longer .

The scientists found that this symmetry breaking generates lift and torque while reducing drag, which causes the system to rotate and self-propel itself upwards. The bulk of the paper deals with finding the underlying physical mechanisms that explain exactly how this happens.

"The symmetry breaking induces an asymmetric pressure distribution around the body, which in turn results in a non-zero net force and a non-zero net torque on body," Bagheri said. "There is a transition (or bifurcation) from symmetric flapping to asymmetric flapping as one decreases the length of the elastic filament. A very long flexible filamentous structure attached to a hind end of a body will flap – similar to the fluttering of a flag attached to a pole – in the same direction as the incoming stream of flow. We have shown that this not the case if the is shorter than a critical value."

This is not the first time that research has found that symmetry breaking can generate locomotion in animals, but the previous studies focused on different scenarios. For example, one study found that symmetry breaking of flagella movement has a significant impact on the waveform and swimming trajectory of sperm. Beyond animal locomotion, symmetry breaking can explain a wide variety of unexpected properties in areas from physics to biology to economics because it results in a phase transition.

The results from this study could help explain why many animals, such as the , have short, passive filaments that seem to improve their hydro- or aerodynamic behavior. The mechanism could also help improve man-made applications.

"These findings may become useful in technological applications where it is of interest to generate a side/lift force on a moving body without increasing the drag from the surrounding fluid," Bagheri said. "The unexpected feature is that the drag on the body is not increased in the presence of the elastic structure, compared to the body without any elastic structures."

Explore further: Gene family found to play key role in early stages of development

More information: Shervin Bagheri, et al. "Spontaneous Symmetry Breaking of a Hinged Flapping Filament Generates Lift." PRL 109, 154502 (2012) DOI: 10.1103/PhysRevLett.109.154502

Journal reference: Physical Review Letters search and more info website


Related Stories

Biophysics: Order in chaos

May 3, 2012

The process of skeletal muscle contraction is based around protein filaments sliding inside sarcomeres — the structural units of muscle fiber. Inside each sarcomere is a set of filament motors, which appear in different ...

Scientists discover second purpose for vortex generators

September 13, 2012

(—An airplane's vortex generators, which look like small fins on its surface, improve the plane's aerodynamics similar to the way in which the dimples on a golf ball improve the ball's aerodynamics: by delaying ...

Recommended for you

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

Using organoids to understand how the brain wrinkles

February 20, 2018

A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 23, 2012
The headline reads like the explanation of how dark energy is generated and i am not joking
not rated yet Nov 01, 2012
Only if you flap your hands to deny observed dark matter, which is predicted to be supersymmetric particles and as such a result of symmetry breaking, and then flap your gums to make it into even more of a joke.

In this analogy, dark energy would be the filaments as it consists of the particle's and other fields residual (zero point) energy that builds up vacuum energy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.