Biophysics: Order in chaos

Biophysics: Order in chaos
© fsecart

The process of skeletal muscle contraction is based around protein filaments sliding inside sarcomeres — the structural units of muscle fiber. Inside each sarcomere is a set of filament motors, which appear in different densities in different areas. Scientists previously thought that the motor force would change according to the filament load in the muscle, but recent studies have shown that the motor force actually maintains a constant level during the muscle contraction. Despite such breakthroughs, however, it remains unclear exactly how this constant force is maintained in an otherwise chaotic system.

Bin Chen of the A*STAR Institute of High Performance Computing and Huajian Gao at Brown University, US, have now built a model to illustrate the process of skeletal and show how a constant force can be sustained by the protein motors.

The two key proteins in muscle contraction are actin and myosin. Myosin drives the system, forming a thick filament made up of numerous motors which ‘grab’ onto, bind to and slide past the thinner actin filaments during contraction. This ‘grabbing’ and sliding motion has been shown to be fairly chaotic in nature, with attachment and release happening at random. When the weight of an object exerts a load on the filaments — for example, when you try to lift something up — the muscles must contract, requiring the protein motors to generate a force opposite to the load.

Chen and Gao have created a new fiber model to demonstrate how contraction forces work. “Our model is designed for the sarcomere,” Chen explains. “We consider the thin filament as an elastic rod under a filament force, which is driven by multiple stochastic myosin motors that convert the chemical energy of adenosine-5'-triphosphate (ATP) hydrolysis into stored elastic energy and then function like swinging arms.”

The results show that the unique way in which the myosin motors randomly attach and release from actin, coupled with the elastic properties of the motors, generate a consistent force across the whole sarcomere. When there is a higher filament load, more myosin motors are attached to the actin, but the overall motor force remains constant.

“This regulation mechanism may exist in various biological processes and dramatically induces order within a chaotic system,” explains Chen. “Our modeling framework can also be further adapted to study the behaviors of other actomyosin complex structures, which is part of our plan for future work in this area.”


Explore further

Cardiac muscle really knows how to relax: Potential cardio-protective mechanism in heart

More information: Chen, B. et al. Motor force homeostasis in skeletal muscle contraction. Biophysical Journal 101, 396–403 (2011) doi:10.1016/j.bpj.2011.05.061
Journal information: Biophysical Journal

Provided by ResearchSEA
Citation: Biophysics: Order in chaos (2012, May 3) retrieved 19 August 2019 from https://phys.org/news/2012-05-biophysics-chaos.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

May 03, 2012
The body is not a mechanical system. It is fundamentally electromagnetic. Proteins are covered in alternating charges which are sized to the dimensions of the water molecule. That is no accident. The polywater debates have distracted people from the observational fact that water does indeed behave differently in the presence of proteins. The proteins can structure the water into a quantum coherent state. The cells are behaving as gels, which can transition between phases, based upon the very rapid electrochemical folding of proteins. Gels give us all of the components we need to create an efficient biological cell. Mechanical systems are not efficient, and nature opts for efficiency.

May 03, 2012
Water is used by proteins to pump protons.

http://sciencedai...3643.htm

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more