Efficient catalysis on chiral surfaces

August 24, 2012 By Peter Rueegg
Efficient catalysis on chiral surfaces
Model of the reaction steps on the chirally modified platinum surface. Illustration: Prof. A. Baiker’s group / ETH Zurich

(Phys.org)—Practice is when everything works but nobody knows why. This light-hearted saying can equally be applied to chemical processes. "The process of so-called heterogeneous asymmetric catalysis is very easy to use in itself and works extremely well," says Alfons Baiker, an emeritus professor of reaction engineering and catalysis. "Understanding how it works, however, poses a major challenge for research." In a paper just published in the journal Angewandte Chemie, Baiker and his team describe a mechanism that is responsible for converting a non-chiral substrate with over 90% yield into the desired of two possible chiral products, a precursor of vitamin B5.

Chirality as a challenge
Chiral molecules exist in two mirror forms, so-called enantiomers. They have the same but behave like the right hand to the left: laid on top of one another, they cannot be aligned. Because the two enantiomers differ in terms of their , it is crucial that only one of two possible forms is produced in the production of , pharmaceuticals, flavours and fragrances, or even fertilisers, for instance. Obtaining a high level of enantiopurity in a chemical reaction, however, is a challenge. One way of achieving this is to use certain catalysts, which create a particular reaction centre to determine the chirality () of a product in a controlled fashion. Experts refer to this as "asymmetric catalysis".

Special catalytic process necessary
Alfons Baiker's team worked with a special form of this catalytic process, so-called heterogeneous asymmetric catalysis, and analysed it in detail. In the process, a catalytically active noble metal—in this case, platinum—is modified with a suitable chiral molecule in such a way that its surface also becomes handed. The noble metal itself is achiral. The modifier binds the substrate available in solution in such a way that almost only one of the two enantiomers is formed during the reaction.

In the case at hand, the modifier is cinchonidine, which adheres to the platinum surface. The substrate , ketopantolactone, binds to the modifier in a highly specific way and picks up hydrogen atoms from the surface of the metal to form (R)-pantolactone, a of vitamin B5 frequently used in industry.

Years ago, Alfons Baiker and his team already discovered that the modifier and substrate bind to each other via a hydrogen bridge between a nitrogen and an oxygen atom. The chemists thus assumed that only this one bond was needed for a successful reaction, but were unable to explain the well-functioning, "high-percentage" conversion of ketopantolactone into (R)-pantolactone sufficiently.

New interaction as pointer on the scales
Using special, complex analysis methods which they devised themselves, the chemists from ETH Zurich have now succeeded in identifying another key interaction between the modifier and substrate. In doing so, the researchers investigated the possible structure of the modifier-substrate complex in detail and came across a previously unknown interaction between the two substances: a hydrogen bond that forms a bridge between two oxygen atoms of the two molecules at a particular point. "This interaction was previously unknown and has a significant effect on the controlled formation of the desired enantiomer," says Baiker.

The modifier molecules that adhere to the platinum surface also make a major contribution. They have a movable "head section", which facilitates the formation of the crucial bonds with the reactive molecule, as the research team was able to prove in earlier studies with the aid of scanning tunnelling microscopy. If there are too many of the bulky modifiers on the surface of the metal, they no longer occupy their preferential position, which means that not only the desired enantiomer is produced anymore.

Producing tailored modifiers
Alfons Baiker and his team have been conducting research on heterogeneous catalysis for over twenty years. For him, his latest paper is "merely" one of over 220 publications on this kind of catalysis that have sprung from his group over the years.

But why do the researchers want to know which mechanism and bonding types underlie this catalysis? "Apart from anything else, so we can produce 'tailored' modifiers for the chiral modification of active metal surfaces," says Baiker. "The structure and bonding types of the modifier and substrate need to match in order to be able to perform asymmetric catalysis."

Heterogeneous catalysis with plus points
To this day, the chemical industry tends to use asymmetric heterogeneous catalysis rarely. It primarily deploys homogeneous catalysis, in which the catalyst and substrate are present in the liquid phase. According to Baiker, however, heterogeneous asymmetric catalysis has several tangible technical advantages, such as the easier separation, regeneration and recycling of the . Moreover, it enables production processes to be conducted more easily. This, along with the basic knowledge of chiral surfaces gained, is the main driver of his catalysis research, says the emeritus professor.

"If we succeed in modifying the surfaces of metals specifically for a particular reaction with chiral molecules, it could be extremely important for the production of enantiopure compounds," says Baiker. The possibility of switching from the production of one enantiomer to the other in a continuous production process by substituting the modifier, for instance, is extremely interesting. This would enable products of a different to be produced in a single operation.

Explore further: Chiral metal surfaces may help to manufacture pharmaceuticals

More information: Meemken F, Maeda N, Hungerbühler K & Baiker A: Platinum-Catalyzed Asymmetric Hydrogenation: Spectroscopic Evidence for an O-H-O Hydrogen-Bond Interaction between Substrate and Modifier. Angewandte Chemie International Edition. Volume 51, Issue 33, 8212–8216, 13. August 2012. DOI: 10.1002/anie.201203007

Related Stories

High-yield selective synthesis of specific molecules

July 6, 2012

Organic chemists seek synthesis reactions that produce high yields of very pure products. European researchers have developed novel synthetic reactions for a class of compounds particularly relevant to potential drug therapies.

Taming the molecule's Dr. Jekyll and Mr. Hyde

June 14, 2011

Many organic molecules are non-superimposable with their mirror image. The two forms of such a molecule are called enantiomers and can have different properties in biological systems. The problem is to control which enantiomer ...

One step closer to green catalysis

November 2, 2010

Mirror image catalysis with water in water is finally possible. Mirror image catalysis in water with water is effective and produces no waste. Researchers have now succeeded in imitating this marvelous trick of nature. NWO ...

A personality change for a catalyst

March 7, 2011

For more than 40 years, an ambition of catalysis science has been to persuade homogeneous catalysts to behave more like heterogeneous catalysts, while still maintaining their activity and exquisite selectivity. Professor ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.