Swarming drones could save lives at sea

July 9, 2012
Research student Monica Chi and her supervisor John Page

(Phys.org) -- Inspired by the swarming patterns of animals in nature, a UNSW aerospace engineering PhD student is using biomimicry to improve the marine search and rescue capabilities of unmanned aerial vehicles (UAVs).

Monica Chi, from the School of Mechanical and at UNSW, is developing to test the efficacy of groups of UAVs for finding and tracking people lost at sea.

She has been invited to attend and present her research at the prestigious 2012 International Graduate Summer School in Aeronautics and Astronautics at Beihang University in China this July.

Chi is part of a team of researchers at UNSW using “evolutionary” algorithms to simulate novel and chaotic flight formations for UAVs that mimic the swarm behavior demonstrated by such as ants, honeybees, and wolves.

“The strengths of having UAVs rather than piloted vehicles for marine search and rescue is that they are not limited by human capability in terms of flying in dangerous or poor visibility conditions,” says Chi.

“The simulations help us test and analyse new optimising algorithms to reduce the cost and amount of resources consumed in , and also to reduce the response time and increase the probability of saving lives,” she says.

In the event of a shipwreck or distress call, one of the first things rescuers do is establish a search boundary. In Chi’s simulations, individual drones in the swarm of UAVs communicate with each other and take cues from their environment through rule sets as they search the specified area. 

These rules ensure they deliver maximum search coverage in changing environmental conditions without colliding. When they identify survivors they are programmed to alter their flight patterns so they can track the target in open water until a rescue helicopter or vessel arrives. 

Chi says the work is inspired by nature, where swarm behaviour is occurring in many different systems, even in fluids: “Water can be broken down into spherical particles – or individual agents – that follow a set of rules. We decentralise everything and look for the patterns that emerge.”

“There really aren’t many people in the world taking this approach with simulation of UAVs,” says John Page, a senior lecturer in at UNSW and Chi's supervisor. “In addition to vehicles, we’re also looking at how these swarms can be applied to power generation and other complex systems.”  

Explore further: Engineers look to the birds for the future of UAVs (w/ video)

Related Stories

Unmanned planes look for Katrina survivors

September 15, 2005

Unmanned, small aircraft were being used this week to search for survivors of Hurricane Katrina in the first domestic use of such surveillance vehicles.

Fighting house fires with computer models

May 24, 2012

(Phys.org) -- Through advanced computer modelling of house fires, mechanical engineers at UNSW are giving fire fighters a new suite of tools to investigate and battle dangerous blazes in time for the traditionally high-risk ...

Airborne robot swarms are making complex moves (w/ video)

February 2, 2012

(PhysOrg.com) -- The GRASP Lab at the University of Pennsylvania this week released a video that shows their new look in GRASP Lab robotic flying devices. They are now showing flying devices with more complex behavior than ...

The washable wearable antenna

September 30, 2011

Wearing an antenna – without anyone knowing – is making a splash in the world of search and rescue.

Recommended for you

WhatsApp vulnerable to snooping: report

January 13, 2017

The Facebook-owned mobile messaging service WhatsApp is vulnerable to interception, the Guardian newspaper reported on Friday, sparking concern over an app advertised as putting an emphasis on privacy.

US gov't accuses Fiat Chrysler of cheating on emissions

January 12, 2017

The U.S. government accused Fiat Chrysler on Thursday of failing to disclose software in some of its pickups and SUVs with diesel engines that allows them to emit more pollution than allowed under the Clean Air Act.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 10, 2012
So I am guessing these UAVs get the last known location of the vessel and the current wind/surf conditions and then all go off from there in the most likely places the ship/survivors could be, while also not covering the same ground and not colliding with each other.

Guess you have to keep the implementation details a little sparse to get the edge in UAV Search and Rescue operations??

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.