New study finds titan cells protect Cryptococcus

May 28, 2012

Giant cells called "titan cells" protect the fungus Cryptococcus neoformans during infection, according to two University of Minnesota researchers. Kirsten Nielsen, Ph.D., an assistant professor in the department of microbiology, and recent Ph.D. recipient Laura Okagaki believe their discovery could help develop new ways to fight infections caused by Cryptococcus.

The findings will be published in the June issue of the journal . The study was funded by the National Institutes of Health and the University of Minnesota's Medical School.

Cryptococcus, a fungus frequently found in dust and dirt, is responsible for the deaths of more than 650,000 worldwide each year. It is also a potentially deadly concern among chemotherapy and organ transplant patients. Currently, Cryptococcus causes more annual deaths in sub-Saharan Africa than tuberculosis.

"While most healthy individuals are resistant to Cryptococcus infections, the fungus can cause for those with already weak immune systems," said Dr. Nielsen.

When inhaled, Cryptococcus can cause an infection in the lungs. This infection can spread to the brain and result in meningitis, an often-deadly inflammation of the brain and spine.

Nielsen and Okagaki found that titan cells, or Cryptococcus cells ten to twenty times the size of a normal cell, are too large to be destroyed by the body's .

Researchers also found the presence of titan cells can protect all Cryptococcus cells in the area, even the normal sized Cryptococcus cells.

"This tells us that titan is an important aspect of the interaction between the human/host and the organism that allows Cryptococcus to cause disease," said Nielsen. "This information will help us find new ways to treat Cryptococcus infections that are very difficult to treat with currently available drugs."

Explore further: Predicting fatal fungal infections

Related Stories

Predicting fatal fungal infections

June 16, 2009

In a study published in The Journal of Infectious Diseases, researchers from Albert Einstein College of Medicine of Yeshiva University have identified cells in blood that predict which HIV-positive individuals are most likely ...

GE eucalyptus tree investigation urged

June 15, 2007

Several U.S. environmental groups are upset concerning a possible link between a pathogenic fungus and genetically engineered eucalyptus trees.

Recommended for you

Lab charts the anatomy of three molecular channels

January 23, 2017

Using a state-of-the-art imaging technology in which molecules are deep frozen, scientists in Roderick MacKinnon's lab at Rockefeller University have reconstructed in unprecedented detail the three-dimensional architecture ...

New steps in the meiosis chromosome dance

January 23, 2017

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that's how sperm and eggs are made. And when meiosis doesn't work properly, it can lead to ...

Research describes missing step in how cells move their cargo

January 23, 2017

Every time a hormone is released from a cell, every time a neurotransmitter leaps across a synapse to relay a message from one neuron to another, the cell must undergo exocytosis. This is the process responsible for transporting ...

Immune defense without collateral damage

January 23, 2017

Researchers from the University of Basel in Switzerland have clarified the role of the enzyme MPO. In fighting infections, this enzyme, which gives pus its greenish color, produces a highly aggressive acid that can kill pathogens ...

Provocative prions may protect yeast cells from stress

January 23, 2017

Prions have a notorious reputation. They cause neurodegenerative disease, namely mad cow/Creutzfeld-Jakob disease. And the way these protein particles propagate—getting other proteins to join the pile—can seem insidious.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.