ALMA turns its eyes to Centaurus A

May 31, 2012
This new image of Centaurus A combines ALMA and near-infrared observations of the massive elliptical radio galaxy. The new ALMA observations, shown in a range of green, yellow and orange colors, reveal the position and motion of the clouds of gas in the galaxy. They are the sharpest and most sensitive such observations ever made. ALMA was tuned to detect signals with a wavelength around 1.3 millimeters, emitted by molecules of carbon monoxide gas. The motion of the gas in the galaxy causes slight changes to this wavelength, due to the Doppler effect. The motion is shown in this image as changes in color. Greener features trace gas coming towards us while more orange features depict gas moving away. We can see that the gas to the left of the center is moving towards us, while the gas to the right of the center is moving away from us, indicating that the gas is orbiting around the galaxy. The ALMA observations are overlaid on a near-infrared image of Centaurus A obtained with the SOFI instrument attached to the ESO New Technology Telescope (NTT). Credit: ALMA (ESO/NAOJ/NRAO); ESO/Y. Beletsky

(Phys.org) -- A new image of the galaxy Centaurus A, made with the Atacama Large Millimeter/submillimeter Array (ALMA), shows how the observatory allows astronomers to see through the opaque dust lanes that obscure the galaxy's center, with unprecedented quality. ALMA is currently in its Early Science phase of observations and still under construction, but is already the most powerful of its kind. The observatory has just issued the call for proposals for its next cycle of observations.

Centaurus A is a massive elliptical radio galaxy -- a galaxy which emits strong -- and is the most prominent, as well as by far the nearest, radio galaxy in the sky. Centaurus A has therefore been observed with many different telescopes. Its very luminous centre hosts a with a mass of about 100 million times that of the Sun.

In visible light, a characteristic feature of the galaxy is the dark band that obscures its centre. This dust lane harbours large amounts of , dust and . These features, together with the strong , are evidence that Centaurus A is the result of a collision between a , and a smaller spiral galaxy whose remains form the dusty band.

To see through the obscuring dust in the central band, astronomers need to observe using longer . This new image of Centaurus A combines at wavelengths around one millimetre, made with ALMA, and observations in near-infrared light. It thus provides a clear view through the dust towards the galaxy's luminous centre.

The new ALMA observations, shown in a range of green, yellow and orange colours, reveal the position and motion of the clouds of gas in the galaxy. They are the sharpest and most sensitive such observations ever made. ALMA was tuned to detect signals with a wavelength around 1.3 millimetres, emitted by molecules of . The motion of the gas in the galaxy causes slight changes to this wavelength, due to the Doppler effect. The motion is shown in this image as changes in colour. Greener features trace gas coming towards us while more orange features depict gas moving away. We can see that the gas to the left of the centre is moving towards us, while the gas to the right of the centre is moving away from us, indicating that the gas is orbiting around the galaxy.

The ALMA observations are overlaid on a near-infrared image of Centaurus A obtained with the SOFI instrument attached to the ESO New Technology Telescope (NTT). The image was processed using an innovative technique that removes the screening effect of the dust (eso0944 - http://www.eso.org/public/news/eso0944/). We see a clear ring of stars and clusters glowing in a golden colour, the tattered remains of the being ripped apart by the gravitational pull of the giant elliptical galaxy.

The alignment between the ring of stars seen by the NTT in and the gas seen by ALMA at millimetre wavelengths highlights different aspects of similar structures in the galaxy. This is an example of how observations with other telescopes can complement these new observations from ALMA.

Construction of ALMA, on the Chajnantor Plateau in northern Chile, will be completed in 2013, when 66 high-precision antennas will be fully operational. Half of the antennas have already been installed. Early scientific observations with a partial array began in 2011, and are already producing outstanding results. The ALMA observations of Centaurus A shown here were taken as part of the Commissioning and Science Verification phase of the telescope.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Explore further: Black hole outflows from Centaurus A detected with APEX

Related Stories

Black hole outflows from Centaurus A detected with APEX

January 28, 2009

(PhysOrg.com) -- Astronomers have a new insight into the active galaxy Centaurus A (NGC 5128), as the jets and lobes emanating from the central black hole have been imaged at submillimetre wavelengths for the first time. ...

European ALMA antenna brings total on Chajnantor to 16

August 1, 2011

The first European antenna for the Atacama Large Millimeter/submillimeter Array (ALMA) has reached new heights, having been transported to the observatory’s Array Operations Site (AOS) on 27 July 2011. The 12-metre diameter ...

A deeper look at Centaurus A

May 16, 2012

(Phys.org) -- The strange galaxy Centaurus A is pictured in a new image from the European Southern Observatory. With a total exposure time of more than 50 hours this is probably the deepest view of this peculiar and spectacular ...

Worldwide effort bringing ALMA telescope into reality

February 15, 2008

In the thin, dry air of northern Chile's Atacama Desert, at an altitude of 16,500 feet, an amazing new telescope system is taking shape, on schedule to provide the world's astronomers with unprecedented views of the origins ...

The cool clouds of Carina

November 16, 2011

(PhysOrg.com) -- Observations made with the APEX telescope in submillimetre-wavelength light reveal the cold dusty clouds from which stars form in the Carina Nebula. This site of violent star formation, which plays host to ...

Recommended for you

Mars rover Opportunity on walkabout near rim

June 23, 2017

NASA's senior Mars rover, Opportunity, is examining rocks at the edge of Endeavour Crater for signs that they may have been either transported by a flood or eroded in place by wind.

CHESS mission will check out the space between stars

June 23, 2017

Deep in space between distant stars, space is not empty. Instead, there drifts vast clouds of neutral atoms and molecules, as well as charged plasma particles called the interstellar medium—that may, over millions of years, ...

Dutch astronomers discover recipe to make cosmic glycerol

June 23, 2017

A team of laboratory astrophysicists from Leiden University (the Netherlands) managed to make glycerol under conditions comparable to those in dark interstellar clouds. They allowed carbon monoxide ice to react with hydrogen ...

Scientists uncover origins of the Sun's swirling spicules

June 22, 2017

At any given moment, as many as 10 million wild jets of solar material burst from the sun's surface. They erupt as fast as 60 miles per second, and can reach lengths of 6,000 miles before collapsing. These are spicules, and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.