Fossilized plant matter points to desertification near Tibetan Plateau

April 23, 2012

Roughly 22 million years ago, at the onset of the Miocene, the Tibetan Plateau started to lift upward. The rising land curbed the flow of moist air from the south, sparking the onset of central Asian desertification. Or, perhaps, the supposedly arid region to the northeast of the Tibetan Plateau harbored shallow lakes or wetlands until as recently as 8 million years ago, at which point the historical desertification was initiated by some other mechanism. The current debate between these two proposals, of either a 22- or 8-million-year-old onset of desertification, hinges, to a sizeable degree, on the history of the fine sediments of the Tianshui Basin in central China.

One line of research, which looked at grain sizes, rock , and bulk , among other factors, suggested that the early Miocene sediments were transported to the Tianshui Basin by the wind. The existence of wind-borne sediment, known as loess, would support the 22-million-year hypothesis. Other researchers, however, suggest that though many of the sediment properties are similar to loess, they also show a good match for lake bed or wetland material.

To discriminate between the two hypotheses, Peng et al. measured the chain length distributions of n-alkanes—a type of hydrocarbon found in waxy plant material—from preserved organic material found in Tianshui Basin sediment samples. Long n-alkane chains, those with 27–31 carbon atoms, mainly stem from terrestrial plants, while midsized chains, with 23–25 carbon atoms, derive from aquatic plants or wetland flora. The authors find an abundance of the shorter carbon chains in the Tianshui sediments, an important difference from nearby loess samples. Supported by the observation of preserved pollen and algae, the authors suggest that the Miocene Tianshui Basin was a lake, mudflat, or floodplain region and not the arid loess hypothesized by some researchers.

Explore further: New sources found for accumulated dust on Chinese Loess Plateau

More information: “Biomarkers challenge early Miocene loess and inferred Asian desertification”, Geophysical Research Letters, doi:10.1029/2012GL050934, 2012

Related Stories

Wind can keep mountains from growing

March 28, 2011

Wind is a much more powerful force in the evolution of mountains than previously thought, according to a new report from a University of Arizona-led research team.

Geologists search for prehistoric high

August 20, 2007

Not all areas of the Tibetan Plateau rose at the same time, according to researchers who are determining the past elevation of plateau locations by studying the remains of terrestrial plants that once grew there.

New research helps to identify ancient droughts in China

March 7, 2012

Drought events are largely unknown in Earth's history, because reconstruction of ancient hydrological conditions remains difficult due to lack of proxy. New GEOLOGY research supported by China's NNSF and MS&T uses a microbial ...

New European loess map

November 15, 2007

A new map showing the distribution of loess sediments in Europe has been published for the first time in 75 years, in digital format. With this map, Dagmar Haase, a geographer at the Helmholtz Centre for Environmental Research ...

Recommended for you

Multinationals act on ocean-clogging plastics

January 16, 2017

Forty of the world's biggest companies assembled in Davos agreed on Monday to come up with cleaner ways to make and consume plastic as waste threatens the global eco-system, especially in oceans.

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Soil pores, carbon stores, and breathing microbes

January 16, 2017

Researchers at the Pacific Northwest National Laboratory (PNNL) recently studied how moisture influences soil heterotrophic respiration. That's the breathing-like process by which microbes convert dead organic carbon in the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.