Disarming disease-causing bacteria

April 4, 2012
Professor Trevor Lithgow with Joel Selkrig

(PhysOrg.com) -- New treatments that combat the growing problem of antibiotic resistance by disarming rather than killing bacteria may be on the horizon, according to a new study. 

Published in Nature Structural and Molecular Biology, research led by Monash University showed a protein complex called the Translocation and Assembly Module (TAM), formed a type of molecular pump in bacteria. The TAM allows bacteria to shuttle key disease-causing molecules from inside the bacterial cell where they are made, to the outside surface, priming the bacteria for infection.

Lead author and PhD student Joel Selkrig of the Department of Biochemistry and Molecular Biology at Monash said the work paves the way for future studies to design new drugs that inhibit this process.

"The TAM was discovered in many disease-causing bacteria, from micro-organisms that cause whooping cough and meningitis, to hospital-acquired bacteria that are developing resistance to current antibiotics," Mr. Selkrig said.

“It is a good antibacterial target because a drug designed to inhibit TAM function would unlikely kill bacteria, but simply deprive them of their molecular weaponry, and in doing so, disable the disease process."

“By allowing bacteria to stay alive after antibiotic treatment, we believe we can also prevent the emergence of , which is fast becoming a major problem worldwide."

The Monash team, led by Professor Trevor Lithgow from the Department of Biochemistry and , showed the TAM was made of two protein parts, TamA and TamB, which function together to form a machine of molecular scale.

Together with colleagues at the University of Melbourne, they compared normal virulent bacteria to mutant strains of bacteria engineered to have no TAM.

"We noticed that proteins important for disease were missing in the outer membrane of the mutant bacteria,” Mr. Selkrig said.

“The absent proteins help bacteria to adhere to our bodies and perform disease-related functions.”

Mr. Selkrig said the next step for the group was to dissect the molecular mechanism of how the TAM complex functions and, in collaboration with researchers at the Monash Institute of Pharmaceutical Sciences, design an antibiotic that inhibits the TAM in .

Explore further: The structure of resistance

Related Stories

The structure of resistance

February 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

A step closer to understanding, averting drug resistance

January 31, 2012

(Medical Xpress) -- The multidrug transporter EmrE functions as an asymmetric antiparallel dimer (molecule with two subunits). Drug (blue) transport from the inside to the outside of the cell membrane is accomplished by exchange ...

Antibiotic resistance spreads rapidly between bacteria

April 11, 2011

The part of bacterial DNA that often carries antibiotic resistance is a master at moving between different types of bacteria and adapting to widely differing bacterial species, shows a study made by a research team at the ...

Nanotechnology used to probe effectiveness of antibiotics

February 4, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Finding E. coli’s Achilles heel

November 10, 2011

(PhysOrg.com) -- Thanks to the work of a Simon Fraser University researcher and two of his students, science is closer to finding a new way of combatting infections caused by Escherichia coli (E. coli) and other related bacteria.

Recommended for you

Knowledge gap on the origin of sex

May 26, 2017

There are significant gaps in our knowledge on the evolution of sex, according to a research review on sex chromosomes from Lund University in Sweden. Even after more than a century of study, researchers do not know enough ...

The high cost of communication among social bees

May 26, 2017

(Phys.org)—Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Why communication is vital—even among plants and funghi

May 26, 2017

Plant scientists at the University of Cambridge have found a plant protein indispensable for communication early in the formation of symbiosis - the mutually beneficial relationship between plants and fungi. Symbiosis significantly ...

Darwin was right: Females prefer sex with good listeners

May 26, 2017

Almost 150 years after Charles Darwin first proposed a little-known prediction from his theory of sexual selection, researchers have found that male moths with larger antennae are better at detecting female signals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.