Novel plastics and textiles from waste with the use of microbes

March 16, 2012

New biotechnological and chemical methods will facilitate efficient production of chemicals, materials and fuels from renewable natural resources. The Academy of Finland Centre of Excellence (CoE) in White Biotechnology – Green Chemistry Research focuses on the research and development of microbial cells, or cell factories, for producing new useful compounds from sugars in plant biomass. These compounds can be used, for example, for manufacturing bioplastics or in medical applications.

"By means of gene technology, we can modify microbial metabolism and thereby produce organic acids for a wide range of industrial applications. They can be used, among other things, for manufacturing new plastic and textile materials, or packaging technologies," explains Merja Penttilä, Research Professor and Director of the Centre of Excellence from VTT Technical Research Centre of Finland.

New methods play a key role when various industries are developing environmentally friendly and energy-efficient production processes. Use of renewable natural resources, such as agricultural or industrial waste materials, to replace oil-based will make industries less dependent of fossil raw materials and, consequently, reduce carbon dioxide emissions into the atmosphere.

The CoE also develops highly sensitive measuring methods and investigates microbial cell functions at molecular level. "We need this information to be able to develop efficient bioprocesses for the future. For instance, we build up new micro- and nanoscale instruments for measuring and controlling microbial productivity in bioreactors during production."

Alternatives for oil

The metabolism of microbes is modified so that they will convert plant biomass sugars into sugar acids and their derivatives. These compounds can potentially serve as raw materials for new types of polyesters, whose properties – such as water solubility and extremely rapid degradation into natural substances – can be used, for example, in medicine. By modifying sugar acids, it is also possible to produce compounds that may replace oil-based aromatic acids in the manufacture of thermosetting plastics and textiles.

"Sugar acids can be used to produce biodegradable technical plastics, including polyamides, or functional components that increase the ability of cellulose to absorb water. Novel materials could replace the currently available non-biodegradable absorbent components in hygiene products. Sugar acids are also a source of hydroxy acids, such as glycolic acid, whose oxygen-barrier properties make it suitable for food packaging," explains Professor Ali Harlin, the head of the CoE Green Chemistry team.

In order to be able to replace, in the future, industrial production that is based on petrochemicals with new production processes based on waste biomass, such new processes must be extremely efficient. "A major challenge is how make the production organisms used in bioprocesses, that is, the microbes, to utilise the sugars of the biomass and to convert them into desired compounds in the most effective manner. This development work calls for multidisciplinary competence ranging from biosciences to engineering."

Explore further: Nature's own chemical plant

Related Stories

Nature's own chemical plant

November 10, 2008

Petroleum is the feedstock for many products in the chemical industry. However, this fossil fuel is becoming increasingly scarce and expensive. Renewable raw materials are an alternative. But can the likes of bioethanol be ...

Chemicals and biofuel from wood biomass

December 19, 2011

(PhysOrg.com) -- A method developed at Aalto University in Finland makes it possible to use microbes to produce butanol suitable for biofuel and other industrial chemicals from wood biomass. Butanol is particularly suited ...

Microbes produce fuels directly from biomass

January 27, 2010

A collaboration led by researchers with the U.S. Department of Energy's Joint BioEnergy Institute (JBEI) has developed a microbe that can produce an advanced biofuel directly from biomass. Deploying the tools of synthetic ...

Recommended for you

Making biological drugs with spider silk protein

May 23, 2017

Researchers at Karolinska Institutet in Sweden have managed to synthesise lung surfactant, a drug used in the care of preterm babies, by mimicking the production of spider silk. Animal studies reveal it to be just as effective ...

A new tool for discovering nanoporous materials

May 23, 2017

Materials classified as "nanoporous" have structures (or "frameworks") with pores up to 100 nm in diameter. These include diverse materials used in different fields from gas separation, catalysis, and even medicine (e.g. ...

Taking a closer look at genetic switches in cancer

May 22, 2017

Many things go wrong in cells during the development of cancer. At the heart of the chaos are often genetic switches that control the production of new cells. In a particularly aggressive form of leukemia, called acute myeloid ...

Micro delivery service for fertilizers

May 22, 2017

Plants can absorb nutrients through their leaves as well as their roots. However, foliar fertilization over an extended period is difficult. In the journal Angewandte Chemie, German researchers have now introduced an efficient ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.