Maternal gene causes more piglets to be born

March 26, 2012 by Albert Sikkema

A sow gives birth to more piglets if the DIO3 gene from its mother is expressed instead of the same gene inherited from its father. This is shown during research conducted by the Animal Breeding and Genomics Centre in Wageningen UR.

We already know that during , offsprings get 50 percent of the genes from the father and the other half from its mother. While the parents' genes determine the offsprings' traits, some of these genes are switched on only on the paternal side while others are switched on only on the maternal side. This influences certain traits, such as the number of piglets born.

In genetics, this means that there is a difference between two DNA classes: BA (in which B is maternal and switched on and A is paternal and switched off) and AB (the exact opposite). This is called 'genetic imprinting'. The switches which turn the genes 'on' and 'off' are present in specific parts of the genome, as was already discovered in earlier research on humans. Researchers Albart Coster and Ole Masen used to examine the pig genome to find the genes which regulate fertility. Their search brought them to the DIO3 gene. Subsequent research showed that if the breeding pig gets a strain of this gene from the mother, it gives birth to 12.7 piglets on the average. If the DIO3 strain originates from the father, only 11.9 are born. It is remarkable that just one gene can bring about such a considerable difference.

'Other can also influence the sow's fertility,' says Bovenhuis, 'but the DIO gene alone is responsible for 15 percent of the in offsprings.' This gene can therefore be a major selection criterion in the pig breeding sector. But Bovenhuis says that their research is significant because it offers fundamental knowledge on the of, for example, humans and mice. This is also why their article has been published in the journal at the end of February.

Geneticists do not yet know exactly whether imprinting affects embryo development or fertility. This can only be discovered if there is a big difference in the offsprings' traits. 'If the effect of the DIO3 gene on fertility had only been a few percent, we would never have discovered this gene,' says Bovenhuis.

Explore further: Evolution of an imprinted domain in mammals

Related Stories

Evolution of an imprinted domain in mammals

June 3, 2008

The normal human genome contains 46 chromosomes: 23 from the mother and 23 from the father. Thus, you have two copies of every gene (excluding some irregularity in the pair of sex chromosomes). In general, which parent contributes ...

How a mother's genes can increase birth weight

March 22, 2012

(Medical Xpress) -- Researchers at the UCL Institute of Child Health have found a single genetic variant inherited from the mother significantly increases a baby’s birth weight.

Parental genes do what's best for baby

November 29, 2006

A molecular "battle of the sexes" long considered the major driving force in a baby's development is being challenged by a new genetic theory of parental teamwork.

Recommended for you

Male dolphins offer gifts to attract females

November 21, 2017

Researchers from The University of Western Australia have captured a rare sexual display: evidence of male humpback dolphins presenting females with large marine sponges in an apparent effort to mate.

Study identifies new malaria parasites in wild bonobos

November 21, 2017

Malaria parasites, although widespread among wild chimpanzees and gorillas, have not been detected in bonobos, a chimp cousin. Reasoning that previous studies may have missed infected bonobo populations, a team led by Beatrice ...

The strange case of the scuba-diving fly

November 20, 2017

More than a century ago, American writer Mark Twain observed a curious phenomenon at Mono Lake, just to the east of Yosemite National Park: enormous numbers of small flies would crawl underwater to forage and lay eggs, but ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.