Taking a closer look at molecular electronics

March 9, 2012
Figure 1: A schematic of fluorescence yield x-ray absorption spectroscopy. X-rays (left) fall onto active molecules inside an organic transistor (bottom right), causing fluorescent emission. The intensity of the emission as a function of incident energy reveals information about the state of the emitting molecules (top right). Credit: 2012 Hiroyuki Kato

Molecules and polymers have unique electronic and optical properties suitable for use in electronic devices. These properties, however, are complex and not well understood. Charge transport, for example, is affected by molecule shape, which can change during device operation and is difficult to measure. Now, a new technique is available to characterize the electronic states of molecules, thanks to research by Hiroyuki Kato from the RIKEN Advanced Science Institute and his colleagues in Japan.

The key characteristic of the team’s technique—called fluorescence yield x-ray absorption spectroscopy—is its ability to probe molecules that are buried underneath other molecules, as well as under metallic electrodes (Fig. 1). First, x-ray photons illuminate a device of interest, causing core electrons inside a particular atom to be promoted to higher energy levels. When these electrons relax, they release their energy either to other electrons, or to photons, Kato explains. Finally, these energetic electrons or photons are emitted from the device, and the researchers can measure their energy. Then, they can determine the properties of the emitting molecule. The ability to select the type of atom that is excited—for example, carbon—aids the analysis.

Other researchers had previously monitored electron relaxation by observing emitted electrons. However, they were limited to observing molecules near the device surface since electrons have difficulty passing through other molecules and metals. Kato and colleagues therefore monitored the relaxation of excited electrons via emitted photons since they exit the device easily.

The researchers applied their photon-based technique to an organic thin-film transistor made with the molecule DH6T, which is a small called an oligomer. As they operated the transistor by varying the voltage applied to the gate electrode, Kato and colleagues saw the emitted photon spectrum shift in real time. The dependence of this shift on wavelength and voltage showed that, contrary to expectations, the emitted photons were unaffected by charges induced by the gate voltage. Instead, their spectrum was determined entirely by the internal state of the probed molecules, even under an applied electric field.

Further analysis showed that this electric field was not distributed evenly across the oligomer; rather, it fell disproportionately across one of the chemical groups making up the oligomer. This conclusion represents a first look into the electric field distribution in molecular devices at the scale of individual . Kato says he expects the technique will prove to be a valuable characterization tool for the building blocks of future electronic and optical devices.

Explore further: Free-floating electrons on top of liquid helium yield insights into their transport behavior

More information: Kato, H.S., et al. Characterization of an organic field-effect thin-film transistor in operation using fluorescence-yield x-ray absorption spectroscopy. Physical Review Letters 107, 147401 (2011).

Related Stories

Quantum electronics: Two photons and chips

January 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Detecting an unexpected delay at ultrafast speed

August 5, 2011

Molecules that suddenly transform into new structures when stimulated by photons or electrons play key roles in many chemical and biological processes. Recently, chemists have discovered that adding transition metals such ...

New device exposes explosive vapors

August 15, 2011

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, ...

Size matters -- even for molecules

February 3, 2012

(PhysOrg.com) -- Two electrons that are emitted from a large molecule by a single photon may originate from far apart within that molecule. In a recent study on hydrocarbon molecules consisting of one to five fused benzene ...

Recommended for you

Researchers control soft robots using magnetic fields

March 29, 2017

A team of engineering researchers has made a fundamental advance in controlling so-called soft robots, using magnetic fields to remotely manipulate microparticle chains embedded in soft robotic devices. The researchers have ...

How to outwit noise in quantum communication

March 29, 2017

How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem.

Testing the performance of semiconductors—with light

March 29, 2017

Semiconductors are the cornerstone of modern electronics. They're used in solar cells, light emitting diodes (LEDs), microprocessors in laptops and cell phones, and more. Most of them are made of silicon, but silicon has ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.