Developing hardier, weather-resistant crops

February 14, 2012 By Miles O' Brien and Jon Baime

At first, the back room of plant physiologist Edgar Spalding's lab at the University of Wisconsin-Madison might be mistaken for an alien space ship set straight out of a Hollywood movie. It's a room bathed in low-red light with camera lenses pointing at strange looking entities encased in Petri dishes.

A closer inspection reveals the contain nothing alien at all, but rather very down-to-earth corn seedlings. They're grown in red light for optimal growth. They're just one of the plants featured in thousands of time-lapse movies Spalding has created over the past five years. The goal: figure out how to grow crops optimally suited to survive, and thrive.

The video will load shortly

"We can't hope to improve a plant unless we understand it well," says Spalding. With support from the National Science Foundation (NSF), Spalding is exploring just what makes plants tick. He says the key is to study the function of each of the thousands of genes that make up the plants' DNA. "One way to do that is to collect images of those plants that have those genes altered in some way. And by measuring how those plants grow and develop differently," says Spalding.

"We are able to infer the function of the gene that's been manipulated," he continues. Researchers have created thousands of genetically different . Spalding uses specially rigged cameras to snap pictures every 30 seconds or so of the plants' roots as they grow.

He also uses a six-foot high that's capable of shooting dozens of roots at once. "We have made hundreds of thousands of measurements from thousands of different plants. Let's say we had a ruler, we'd probably be on number two... maybe," he says with a chuckle. The time-lapse movies are loaded into a computer and an algorithm measures cellular growth rates in the root with pinpoint accuracy, as well as the angle and curvature of the root tip.

"By using this so-called or to track [the plants] growth and development, we can get at the genes that control root growth and those hopefully will have fundamental importance to crop improvement. It lays the foundation for discoveries that will help improve for human purposes."

Spalding is sowing the seeds for better crops of the future. It's an idea he thinks is worth growing.

Explore further: Researcher identifies protein that concentrates carbon dioxide in algae

Related Stories

Gardening in Space with HydroTropi

January 19, 2011

(PhysOrg.com) -- Plants are fundamental to life on Earth, converting light and carbon dioxide into food and oxygen. Plant growth may be an important part of human survival in exploring space, as well. Gardening in space has ...

Outwitting pesky parasites

July 15, 2007

Across the southern United States, an invisible, yet deadly parasite known as the root-knot nematode is crippling soybean crops. While plant breeders are racing to develop cultivars resistant to the root-knot nematode, they ...

How roots find a route

February 28, 2008

Scientists at the John Innes Centre in Norwich have discovered how roots find their way past obstacles to grow through soil. The discovery, described in the forthcoming edition of Science, also explains how germinating seedlings ...

Recommended for you

Seeking structure with metagenome sequences

January 19, 2017

For proteins, appearance matters. These important molecules largely form a cell's structures and carry out its functions: proteins control growth and influence mobility, serve as catalysts, and transport or store other molecules. ...

Moth gut bacterium defends its host by making antibiotic

January 19, 2017

Nearly half of all insects are herbivores, but their diets do not consist of only plant material. It is not uncommon for potentially harmful microorganisms to slip in during a feast. In a study published on January 19 in ...

Balance may rely on the timing of movement

January 19, 2017

Zebrafish learn to balance by darting forward when they feel wobbly, a principle that may also apply to humans, according to a study led by researchers at NYU Langone Medical Center.

Phages found to use peptide to communicate with one another

January 19, 2017

(Phys.org)—A team of researchers from several institutions in Israel has, for the first time, identified a molecule that phages use to communicate with one another. In their paper published in the journal Nature, the team ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.