JQI cool nano loudspeakers could makes for better MRIs, quantum computers

January 25, 2012
JQI researchers think they have discovered a way to amplify faint electrical signals using the motion of a nanomechanical membrane, or loudspeaker. If shown in experiments, the scheme could prove a boon to magnetic resonance imaging and quantum information science. This schematic of the proposed device shows its use in detecting--in this example--a signal produced by the quantum-mechanical "spin" of a group of atoms. The atoms generate a faint radiofrequency signal in a coil (L) which is connected to microscale wires that form an electrical capacitor. This vibrates the 'nanomembrane' which in turn affects the resonant frequency of a laser optical cavity. The output is light at frequency that is the sum of the original laser frequency plus the signal from the atoms. Credit: Taylor/NIST

(PhysOrg.com) -- A team of physicists from the Joint Quantum Institute (JQI), the Neils Bohr Institute in Copenhagen, Denmark, and Harvard University has developed a theory describing how to both detect weak electrical signals and cool electrical circuits using light and something very like a nanosized loudspeaker. If demonstrated through experiment, the work could have a tremendous impact on detection of low-power radio signals, magnetic resonance imaging (MRI), and the developing field of quantum information science.

The JQI is a collaborative venture of the National Institute of Standards and Technology (NIST) and the University of Maryland, College Park.

"We envision coupling a nanomechanical membrane to an electrical circuit so that an electrical signal, even if exceedingly faint, will cause the membrane to quiver slightly as a function of the strength of that signal," says JQI physicist Jake Taylor. "We can then bounce photons from a laser off that membrane and read the signal by measuring the modulation of the reflected light as it is shifted by the motion of the membrane. This leads to a change in the wavelength of the light."

Present technology for measuring the is highly sensitive, which makes it ideal for detecting the nanoscopic motions of the loudspeaker caused by extremely faint .

And the ability to detect extremely faint electrical signals may someday make MRI medical procedures much easier.

" are so big because they are stuffed with really powerful , but if we can reduce the strength of the signals we need for a reading, we can reduce the strength, and the size, of the magnets," Taylor says. "This may mean that one could get an MRI while sitting quietly in a room and forgo the tube."

The same setup could be used to generate information-carrying photons from one qubit to another, according to Taylor.

One popular quantum information system design uses light to transfer information among qubits, entangled particles that will exploit the inherent weirdness of quantum phenomena to perform certain calculations impossible for current computers. The 'nanospeaker' could be used to translate low-energy signals from a quantum processor to optical photons, where they can be detected and transmitted from one qubit to another.

All this, and the team will throw in cooling the system for free. According to their calculations, translating the mechanical motion of the little loudspeaker into photons will siphon a considerable amount of heat out of the system (from room temperature to 3 kelvin or -270 C), which in turn will reduce noise in the system and provide for better signal detection.

Explore further: Finnish team devise nanomechanical microwave amplifier with near least possible noise generation

More information: J. M. Taylor, A. S. Sørensen, C. M. Marcus and E. S. Polzik. Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601. Published online Dec. 27, 2011. link.aps.org/doi/10.1103/PhysRevLett.107.273601

Related Stories

JQI researchers create entangled photons from quantum dots

November 18, 2009

To exploit the quantum world to the fullest, a key commodity is entanglement—the spooky, distance-defying link that can form between objects such as atoms even when they are completely shielded from one another. Now, physicists ...

Breakthrough for photons in the microwave frequency range

February 22, 2011

Photons in the microwave frequency range are important in quantum research - for quantum information processors, for example. Now, for the first time, researchers have achieved the controlled production of single photons ...

Quantum electronics: Two photons and chips

January 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.