December 12, 2011

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

Fluorescent probes increase understanding of bacterium's electron transfer

Structures of biarsenic fluorophores, CrAsH-EDT2 and FlAsH-EDT2. FlAsH-EDT2 represents a fluorescein scaffold derivatized with two As(III) groups (4′,5′-bis(1,3,2-dithioarsolan-2-yl)fluorescein). Each arsenic is capped with an ethanedithiol (EDT). Similarly, CrAsH-EDT2 represents 6-carboxy-FlAsH-EDT2.
× close
Structures of biarsenic fluorophores, CrAsH-EDT2 and FlAsH-EDT2. FlAsH-EDT2 represents a fluorescein scaffold derivatized with two As(III) groups (4′,5′-bis(1,3,2-dithioarsolan-2-yl)fluorescein). Each arsenic is capped with an ethanedithiol (EDT). Similarly, CrAsH-EDT2 represents 6-carboxy-FlAsH-EDT2.

(PhysOrg.com) -- When it comes to transporting a cell's valuable electrons, the metal-reducing microbe Shewanella oneidensis only trusts stable, mature proteins, according to scientists at Pacific Northwest National Laboratory. Immature proteins are degraded before they can take up the task, suggesting that protein trafficking to the outer membrane is tightly regulated.

These results mark another step toward understanding the that enable a bacterial protein-in this case, the cytochrome MtrC-to transfer electrons to minerals in soil, sediment, and subsurface materials. This new information contributes to understanding protein stability and between cells and minerals, which is important for applications in synthetic biology such as biofuel production. The results were published in the journal Biochemistry.

Electron transfer by MtrC, an cytochrome on S. oneidensis, can stabilize contaminants, mitigating their impact on the population and environment. However, scientists believe that gaining insight into the electron transfer mechanisms could also play a role in directing the bacterium toward biofuel production.

"Our goal is to define the role of these cytochromes in the metabolic switching between different terminal electron acceptors," said Dr. Thomas Squier, a PNNL biochemist and senior author of the publication. "The long-term goal is to understand the stability and targeting mechanisms important to synthetic biology applications involving, for example, chemical sensing between living cells and electronic detectors as well as the development of biofuel cells."

These findings don't just relate to Shewanella, though it was in this microbe where MtrC was first seen. They also apply to many other bacteria, such as E. coli, notes Squier.

"This research ties very well into looking at and understanding as a whole," he added.

Measuring MtrC's environmental stability requires the ability to differentiate an immature protein from a mature protein after it is secreted and assembled on Shewanella's outer membrane. To do this, the scientists constructed complementary fluorescent probes to label MtrC. The highly charged carboxy-FlAsH (CrAsH) probe selectively labels mature MtrC only on the outer cell membrane, while the cell-permeable Fluorescein Arsenical Helix (FlAsH) probe labels all MtrC, including immature proteins within the cell.

Load comments (0)