Microscopic worms could hold the key to living life on Mars

November 30, 2011

The astrophysicist Stephen Hawking believes that if humanity is to survive we will have to pull up sticks and colonise space. But is the human body up to the challenge?

Scientists at The University of Nottingham believe that Caenorhabditis elegans (C. elegans), a which is biologically very similar to the human being, could help us understand how humans might cope with long-duration exploration.

Their research, published on Wednesday 30 November 2011 in Interface, a journal of The Royal Society, has shown that in space the C. elegans develops from egg to adulthood and produces progeny just as it does on earth. This makes it an ideal and cost-effective experimental system to investigate the effects of long duration and distance space exploration.

In December 2006 a team of scientists led by Dr Nathaniel Szewczyk from the Division of Clinical Physiology in the School of Graduate Entry Medicine blasted 4,000 C. elegans into space onboard the . The researchers were able to successfully monitor the effect of (LEO) on 12 generations of C. elegans during the first three months of their six month voyage onboard the . These are the first observations of C. elegans behaviour in LEO.

Dr Szewczyk said: "A fair number of scientists agree that we could colonise other planets. While this sounds like science fiction it is a fact that if mankind wants to avoid the natural order of extinction then we need to find ways to live on other planets. Thankfully most of the world's space agencies are committed to this .

"While it may seem surprising, many of the that happen during spaceflight affect and worms and in the same way. We have been able to show that worms can grow and reproduce in space for long enough to reach another planet and that we can remotely monitor their health. As a result C. elegans is a cost effective option for discovering and studying the biological effects of deep space missions. Ultimately, we are now in a position to be able to remotely grow and study an animal on another planet."

Many experts believe the ultimate survival of humanity is dependent upon colonisation of other planetary bodies. But we face key challenges associated with long term . Radiation exposure and musculoskeletal deterioration are thought to be two of the key obstacles to successful habitation beyond LEO.

The C. elegans has been used on Earth to help us understand human biology – now it could help us investigate living on Mars.

C. elegans was the first multi-cellular organism to have its genetic structure completely mapped and many of its 20,000 genes perform the same functions as those in humans. Two thousand of these genes have a role in promoting muscle function and 50 to 60 per cent of these have very obvious human counterparts.

Dr Szewczyk is no stranger to space flight – this was his third space-worm mission. Dr Szewczyk and his team at Nottingham collaborated with experts at the University of Pittsburgh, the University of Colorado and the Simon Fraser University in Canada, to develop a compact automated C. elegans culturing system which can be monitored remotely to observe the effect of environmental toxins and in-flight radiation.

Dr Szewczyk said: "Worms allow us to detect changes in growth, development, reproduction and behaviour in response to environmental conditions such as toxins or in response to deep space missions. Given the high failure rate of Mars missions use of worms allows us to safely and relatively cheaply test spacecraft systems prior to manned missions."

The 2006 space mission, which led to this latest research, was followed up with a fourth mission in November 2009. Some of the results of the 2009 mission were published earlier this year in the journal PLoS ONE.

Together these two missions have established that the team are not only in a position to send worms to other planets but also to experiment on them on the way there and/or once there. More results, including a mechanism by which muscles can repair themselves are due to be published shortly.

The origins of Dr Szewczyk's worms can be traced back to a rubbish dump in Bristol. C. elegans often feed on bacteria that develop on decaying vegetable matter.

Explore further: Space mission for worms

Related Stories

Space mission for worms

January 15, 2009

(PhysOrg.com) -- Worms from The University of Nottingham should be checking in for a flight onboard the Space Shuttle later this year — to help researchers investigate the effect of zero gravity on the body's muscle development ...

Microscopic worms could help open up travel into deep space

June 2, 2011

(PhysOrg.com) -- A space flight by millions of microscopic worms could help us overcome the numerous threats posed to human health by space travel. The Caenorhabditis elegans (C. elegans) have also given experts an insight ...

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.