First elucidation of cause of long-term stability deterioration in solid oxide fuel cells

November 24, 2011, National Institute for Materials Science
Figure:Dumbbell type oxygen vacancy clusters in a C-type rare earth structure

NIMS and the University of Queensland Centre for Microscopy and Microanalysis, the Dalian Polytechnic University, and the Dalian Institute of Chemical Physics, Chinese Academy of Science, clarified for the first time the cluster structure which has an extremely large effect on the long-term stability of solid oxide fuel cells (SOFC) for independent distributed power generation.

Dr. Toshiyuki Mori, Group Leader of the Hetero-interface Design Group, Battery and Field, Global Research Center for Environment and Energy Based on Materials Science (GREEN), National Institute for Materials Science (Japan), and Dr. Zhipeng Li, a Postdoctoral Researcher at GREEN, in joint research with Prof. John Drennan of the University of Queensland Centre for Microscopy and Microanalysis (Australia), the Dalian Polytechnic University (China), and the Dalian Institute of , Chinese Academy of Science (China), clarified for the first time the cluster structure which has an extremely large effect on the long-term stability of (SOFC) for independent distributed power generation. This result was achieved by transmission electron microscope (TEM) observation and computer simulation based on the results thereof.

Active development of fuel cells for home use and large-scale generating systems using SOFC has been underway up to the present. However, while it was possible to manufacture devices which sufficiently satisfied performance requirements, elements of instability remained from the viewpoints of reliability and life, and these were major obstacles to practical application.

In this experiment, the nanoscale defect structures of high performance specimens and specimens which exhibited serious deterioration in performance were observed using a high resolution (TEM), and their distinctive features were then analyzed in . This research ascertained for the first time that a “new oxygen defect cluster structure” which has a structure different from the “oxygen defect (oxygen vacancy) cluster structure” long considered to be the cause of reduced performance, forms in the material, triggering a phase transition, and this has a negative impact on the reliability and durability of fuel cells.

Various puzzling phenomena in SOFC, had been un-explained until now. These are (1) reason why a crystal phase transition occurs together with performance deterioration, (2) reason why adequate reliability cannot be maintained, etc., and they can be interpreted rationally using a model of this oxygen defect cluster structure. As a result effective solutions to these problems can be proposed based on , and the development of high performance, high reliability, long life SOFC materials for use in independent distributed generation is expected to become possible.

These research results were published online on November 7 in “Rapid communications” in the journal of the American Institute of Physics, Physical Review B.

Explore further: Success in developing groundbreaking electrolyte materials

Related Stories

Success in developing groundbreaking electrolyte materials

November 24, 2010

The Fuel Cell Nano-Materials Group at the Japanese National Institute for Materials Science has successfully developed two types of novel materials which satisfy all the three requirements for electrolyte: ion conductivity, ...

TEAM Project Achieves Microscopy Breakthrough

September 6, 2007

The highest-resolution images ever seen in (S)TEM electron microscopy have been recorded using a new instrument developed jointly by U.S. Department of Energy national laboratories, FEI Company and CEOS GmbH, in Heidelberg, ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.