Living out Einstein's dreams - French researchers make quantum breakthrough

September 12, 2011
Living out Einstein's dreams - French researchers make quantum breakthrough

A team of EU-funded researchers has, for the first time, successfully carried out a constant stabilisation experiment of a quantum state - something Albert Einstein himself once dreamt of.

Einstein famously stated he wanted to trap a in a box for around a second, and now a team of French scientists has managed to go one step further by maintaining a constant number of photons in a high-quality in a permanent manner, as they outline in a new study published in the journal Nature.

The study was led by scientists from the Laboratoire Kastler Brossel in Paris.

Building on a breakthrough they made four years ago, where they observed a single and same microwave photon trapped in a box hundreds of times over, in this new study the team stabilised a given number of photons in a 'photon box', a cavity formed of two superconducting mirrors. It is the first time a complete experiment of quantum stabilisation has occurred.

Usually the photon, the basic unit of light, can only be observed when it disappears. The eye absorbs photons, destroying them and translating the information they carry as it is recorded.

Stabilisations play a major role in our everyday lives as they ensure the operation of many systems that surround us, such as in an oven where its heating temperature is dependent on a set value. As long as the ideal temperature has not been reached, the oven continues to heat up then maintains its state according to the thermostat readings.

The main aim of the DECLIC project is to understand the transition from quantum to classical devices. thrives to build large for tasks in communication or computing beyond the reach of classical devices; but questions remain surrounding whether another mechanism responsible for the disappearance of state super-positions at the could exist, in addition to environment-induced decoherence.

The DECLIC project, which runs until 2015, was set up to explore the dynamics of fields trapped in cavities and to study their decoherence under various perspectives. It will implement novel ways to generate non-classical states with large photon numbers stored in one cavity or non-locally split between two.

The AQUTE project's main aims are to develop quantum technologies based on atomic, molecular and optical (AMO) systems for scalable quantum computation and entanglement-enabled technologies like metrology and sensing.

Explore further: Einstein's dream surpassed

More information: Sayrin, C., et al. (2011) 'Real-time quantum feedback prepares and stabilizes photon number states', Nature, 477, 73-77. doi:10.1038/nature10376

Related Stories

Einstein's dream surpassed

September 2, 2011

(PhysOrg.com) -- A constant stabilization experiment of a quantum state has been successfully carried out for the first time by a team from the Laboratoire Kastler Brossel headed by Serge Haroche. The researchers succeeded ...

Yale scientists bring quantum optics to a microchip

September 8, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which quantum ...

Scientists say it's high 'NOON' for microwave photons

February 15, 2011

An important milestone toward the realization of a large-scale quantum computer, and further demonstration of a new level of the quantum control of light, were accomplished by a team of scientists at UC Santa Barbara and ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Bryan_Sanctuary
1 / 5 (1) Sep 24, 2011
Great to capture photons without destroying them in the process. I think there is a long way to go before those photons can be entangled, used as qubits and move to R&D. In fact I doubt it ever will. However I am all for fundamental research and these results are an encouraging step.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.