Designing software to protect against mosquito-borne diseases

July 13, 2011

A team of undergraduate computer scientists and their professor at South Dakota State University are building software to protect people in Africa and North America from mosquito-borne illnesses.

Assistant professor Yi Liu in SDSU’s Department of Electrical Engineering and Computer Science and her team of four undergraduate students are collaborating with associate professor Mike Wimberly of SDSU’s Geographic Information Science Center of Excellence on the project.

Wimberly knows how to interpret data and has developed computational methods to project when conditions are right for populations of the that spread diseases to spike. But what he and his collaborators in needed was a software product to take his early warning system out of the lab.

“Last year, I received an American Recovery and Reinvestment Act supplement from the National Institutes of Health to support my research using remote sensing to develop early warning systems for West Nile virus and malaria,” Wimberly explained. “The supplemental funding is to support accelerated developed of a computer system for downloading, processing, analyzing and visualizing remote sensing data for public health applications. My colleague, Dr. Yi Liu, is currently leading a team of computer science students who are developing the system.”

Liu said the project gives her undergraduate students invaluable experience figuring out what is needed and how to develop software to do it. The final product is to be done by the end of July.

“This is an entire software development process,” Liu said. “In the classroom we teach the students about the requirement stage, the design stage, and the testing stage. The students learn about each of these areas in the individual courses, but now is the time for them to apply all this knowledge in a real-world product.”

They also encounter real problems that need to be addressed and solved.

Liu’s students are Isaiah Snell-Feikema, who is making a graphical user interface for the system and working on data processing; Dan Woodward, who is focused on how the system will download data; Michael VanBemmel, who is working on statistical processing; and Sangik Kim, who is working on a re-projection model for different types of data.

Wimberly’s model uses several data sources, including MODIS (Moderate Resolution Imaging Spectroradiometer), a satellite system that views the entire Earth's surface every one to two days; and TRMM (the Tropical Rainfall Monitoring Mission), a satellite mission which measures precipitation from space.

Wimberly said the application that Liu and her students are building makes it possible to analyze the factors that could add up to a set of conditions ideal for a mosquito-borne illness outbreak. Importantly, it will make it possible to do the analysis without the bandwidth that Wimberly needs to do the analyses in his lab starting from scratch.

“One of the things the system does is distill the information,” Wimberly said. “It takes terabytes of information and summarizes it so that it is relevant to public health. You’re taking a huge amount of data and you’re turning it into a much smaller stream of information and maximizing its usefulness.”

VanBemmel, who has the most programming experience on Liu’s student team, said one important goal for the development team is to make analysis of data far more efficient.

“If you ended up doing it by hand, you would be downloading hundreds of thousands of files,” he said.

The end product will help other researchers and perhaps government health agencies monitor conditions that could contribute to outbreaks of mosquito-borne diseases.

Explore further: Boosting ‘green’ computing with new approach to programming

Related Stories

Dutch support for disaster zone phone software

April 13, 2011

Software developed by Flinders University’s Dr. Paul Gardner-Stephen which enables mobile phones to communicate during a disaster will be freely available to the public by the end of the year thanks to the support of ...

A brainy innovation takes flight

June 2, 2011

A team of Northeastern University engineering students has developed a system that allows a pilot to fly a simulated airplane using nothing more than his or her brainwaves — a program that has piqued military and private-sector ...

For software developers, more speed and mobility

December 14, 2010

Across the globe, technology and innovation are becoming increasingly more reliant on mobility and accessibility. For software developers working on highly complex projects, that means being able to save their work quickly ...

Real-time electronic monitoring for coastal waters

November 1, 2010

( -- Researchers from North Carolina State University are developing a cost-effective electronic monitoring system that will enable researchers to advance our understanding of critical coastal ecosystems by allowing ...

Student pursues breakthrough in supercomputing

June 29, 2011

A Northeastern University undergraduate is leading the development of a new process that will make it possible for certain supercomputers to save their data midway through a computation, preventing the loss of progress due ...

Recommended for you

Volvo to supply Uber with self-driving cars (Update)

November 20, 2017

Swedish carmaker Volvo Cars said Monday it has signed an agreement to supply "tens of thousands" of self-driving cars to Uber, as the ride-sharing company battles a number of different controversies.

New method analyzes corn kernel characteristics

November 17, 2017

An ear of corn averages about 800 kernels. A traditional field method to estimate the number of kernels on the ear is to manually count the number of rows and multiply by the number of kernels in one length of the ear. With ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.