New technique makes artificial bones more natural

June 22, 2011
Procedure for the fabrication of artificial bone structures by combining sponge replica and electrospinning methods. Copyright : NIMS

A new technique for producing artificial bone implants has been developed by Korean researchers. By mimicking natural bone, it is hoped the implant material will better complement the natural regeneration process.

A new technique for producing artificial bone has been developed by Korean researchers. Published in the journal Science and Technology of Advanced Material (STAM), the technique combines two methods to approximate both types of . By mimicking natural bone, it is hoped the implant material will better complement the natural regeneration process.

Most previous studies have focussed on producing cancellous bone, which has a spongy, honeycombed structure. However, artificial bones for practical applications must also imitate , the hard, strong tissue found on the outer layers of bone. Cortical bone is less porous than cancellous bone, but contains canals through which the for flow. By developing a process to imitate this canal structure, the researchers made significant advances in the fabrication of artificial bones.

Bundles of polymer-based * were wrapped around 0.3mm diameter steel wires by the method of “electrospinning”, whereby fine fibres of material are drawn out by electric charge. These bundles were used to cover a scaffold of cancellous bone structure, made by the standard “sponge replica method” out of zirconia (ZrO2) and biphasic calcium phosphate (BCP). Removal of the steel wires resulted in interconnected structures mimicking small human bones.

The resulting structure had a high strength and a porosity of approximately 70%—similar to natural bone. Tests confirmed the artificial bone structure had a high degree of biocompatibility which is critical for real-world applications. However, more research is needed to evaluate the biological properties of this material both in vitro and in vivo.

The rapid ageing of the population makes bone loss and fracture a major worldwide problem and stimulates bone regeneration research. Biomimetic approaches to making artificial implants have attracted much attention, but the dependence of the healing process on interaction with the implant material requires close mimicry of the architecture of natural bone. This paper marks a significant advance in the development of materials and processing technology for the fabrication of artificial bone structures.

*HAp-loaded PMMA-PCL, or polymethylmethacrylate-polycaprolactone-hydroxyapatite

Explore further: Layered approach may yield stronger, more successful bone implants

More information: Yang-Hee Kim and Byong-Taek Lee, Novel approach to the fabrication of artificial small bone using a combination of sponge replica and electrospinning methods, Science and Technology of Advanced Materials 12 (2011) 035002. dx.doi.org/10.1088/1468-6996/12/3/035002

Related Stories

Nanotubes inspire new technique for healing broken bones

July 7, 2005

Scientists have shown for the first time that carbon nanotubes make an ideal scaffold for the growth of bone tissue. The new technique could change the way doctors treat broken bones, allowing them to simply inject a solution ...

Recommended for you

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(Phys.org)—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.