New research improves quality of free electron laser

June 2, 2011

The free electron laser is the next step in the development of equipment to help us see the structure of materials. Nino Čutić at MAX-lab in Lund, Sweden, has done a PhD in further improving the test free electron laser at the laboratory.

As a member of a small team that works with the test free electron laser at MAX-lab, Nino Čutić has helped to make improvements to the technology. The long-term aim of the experiment is to help develop better full-scale free electron lasers than those in existence today.

A free electron laser can be very large – often several hundred metres long – and requires accelerators and magnet structures in order to function. Instead of using gas or crystals, like in a ‘normal’ laser, free, unattached electrons are used. When the electrons, which have gained high speed in an accelerator, lose energy in the magnet structures, they emit light. With the free electron laser technology, this light can gain the characteristics of a laser but at new wavelengths, and this light can be used to study materials. Among other things, greater understanding can be gained of molecular structures and chemical processes.

In MAX-lab’s test , MAX-lab’s existing accelerator has been used in combination with a conventional laser. Nino Čutić’s work attempts to synchronise the electron pulse from the accelerator with the laser pulse from the conventional laser in time and space – something which can be difficult. The electron pulse is around one third of a millimetre long and the laser pulse is around a tenth of a millimetre, and both travel at the speed of light. Nino Čutić has built an electro-optic system and used it to improve the stability of the laser beam. The precision has increased – the overlap between the electron pulse and the pulse is now at around 0.3 picoseconds.

Explore further: Physicists observe electron ejected from atom for first time

More information: Nino Čutić’s thesis is entitled Timing Diagnostics and Coherent Harmonics from a Test-FEL.

Related Stories

Physicists observe electron ejected from atom for first time

October 12, 2010

Physicists at the University of California, Berkeley in collaboration with researchers from the Max Planck Institute of Quantum Optics and the U.S. Department of Energy's Lawrence Berkeley National Laboratory, became the ...

Laser light in the deep infrared

August 23, 2006

Free-electron lasers (FEL) are large and expensive, but they can deliver unique light for research and applications. On August 21, 2006, at the Forschungszentrum Rossendorf (FZR) in Dresden, Germany, the second undulator ...

Watching Electrons with Lasers

November 6, 2008

(PhysOrg.com) -- A team of researchers from the Stanford PULSE Institute for Ultrafast Energy Science at SLAC National Accelerator Laboratory has recently moved a step closer to visualizing the motions of electrons in molecules ...

Recommended for you

Melting solid below the freezing point

January 23, 2017

Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science have discovered a new phenomenon of so-called metastability ...

Probe for nanofibers has atom-scale sensitivity

January 20, 2017

Optical fibers are the backbone of modern communications, shuttling information from A to B through thin glass filaments as pulses of light. They are used extensively in telecommunications, allowing information to travel ...

Magnetic recording with light and no heat on garnet

January 19, 2017

A strong, short light pulse can record data on a magnetic layer of yttrium iron garnet doped with Co-ions. This was discovered by researchers from Radboud University in the Netherlands and Bialystok University in Poland. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.