Compact high-temperature superconducting cable wins 'R&D 100' award

June 23, 2011, National Institute of Standards and Technology
Cross-section of a high-temperature superconducting cable design invented at NIST. In the center are copper wires bundled with nylon and plastic insulation. The outer rings are a series of superconducting tapes wrapped in spirals around the copper. The cable is 7.5 millimeters in outer diameter. Credit: van der Laan/NIST

A method developed by researchers at the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder for making thin, flexible, high-temperature superconducting (HTS) cables has won a 2011 R&D 100 Award from R&D Magazine. The prestigious annual awards salute the 100 most technologically significant products introduced into the marketplace over the past year.

Designed to operate at -196° C (-353° F), the new superconducting cable has a diameter of less than 1 centimeter and is able to carry 2,800 amperes of current—three times as much as thicker, conventional copper or aluminum electrical transmission lines.

The cables are constructed by winding multiple HTS-coated conductors around a multi-strand copper core. The superconducting layers are wound in spirals in alternating directions.

According to developer Danko van der Laan, a University of Colorado scientist working at NIST, the main innovation in the compact cables is the tolerance of newer HTS conductors to compressive strain that allows use of the unusually slender copper core.

Besides power transmission, cables constructed using this invention could be used for superconducting transformers, generators and magnetic energy storage devices that require high-current windings. The compact cables also could be used in high-field magnets for fusion and high-energy physics research and for medical applications such as proton-accelerator cancer treatment systems and magnetic resonance imaging.

Winners of the R&D 100 Awards are selected by an independent panel and the editors of R&D Magazine. The winners represent a cross-section of industry, academia, private research firms and government labs. Winning technologies are used in medical, industrial, research, consumer and manufacturing applications.

Explore further: Compact high-temperature superconducting cables demonstrated at NIST

More information: D.C. van der Laan, X.F. Lu and L.F. Goodrich, "Compact GdBa2Cu3O7-δ coated conductor cables for electric power transmission and magnet applications," Superconductor Science & Technology, vol. 24, 042001, April 2011. doi: 10.1088/0953-2048/24/4/042001

Related Stories

Widespread use of high-temperature superconductors on horizon

April 29, 2005

From improvements in cellular base stations to the development of more efficient electric transmission lines and energy storage systems, high-temperature superconductors (HTS) are nearing their commercial viability. Two-time ...

Power cables light the future path of superconductivity

April 1, 2011

One hundred years ago this month, superconductivity was discovered in the lab of Dutch physicist Heike Kamerlingh Onnes. Since then many more materials have shown to be superconducting, providing new applications and creating ...

Strain Has Major Effect on High-Temp Superconductors

February 15, 2007

Just a little mechanical strain can cause a large drop in the maximum current carried by high-temperature superconductors, according to novel measurements carried out by the National Institute of Standards and Technology. ...

Recommended for you

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

Using organoids to understand how the brain wrinkles

February 20, 2018

A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Noumenon
5 / 5 (1) Jun 23, 2011
If you need some funding, sell some of these to audiophiles.
TehDog
not rated yet Jun 23, 2011
Wow, that's pretty cool stuff :)
... I'll get me coat...
lengould100
not rated yet Jul 12, 2011
But why a core of copper? Its contribution to conductance would be negligable, and it seems many other materials should be more suitable mechanically. Thermal contraction co-efficient?
TheQuietMan
not rated yet Jul 24, 2011
Think back up system. If the superconductivity fails you still need the conductor.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.