'Kinks' in tiny chains reveal Brownian rotation

May 19, 2011, Rice University
The natural axial spin of a tiny chain of polystyrene beads, made stiff by DNA linkers, can be analyzed via a new method created in the lab of Rice University Professor Sibani Lisa Biswal. (Credit Biswal Lab/Rice University)

(PhysOrg.com) -- Rice University researchers have created a method to measure the axial rotation of tiny rods. The technique detailed in a paper by Sibani Lisa Biswal and her colleagues appears this month in the journal Physical Review Letters.

Biswal, an assistant professor in chemical and biomolecular engineering, said it's easy to view microscopic rods as they wiggle and weave under the influence of Brownian forces. But it's never been easy to see one spin along its axis, let alone measure that motion.

The technique created by Biswal and her team involves micron-scale rigid chains in liquid that act like perfect cylinders as they exhibit Brownian motion. But the rodlike chains incorporate the slightest of . These nearly invisible "kinks" are just big enough to the measure the chain's rotation without influencing it.

Knowing how elongated molecules move in a solution is important to those who study the structure of liquid crystals or like the dynamics of lipid bilayers, the gatekeepers in living cells, Biswal said.

The research follows her lab's creation of a technique to build stiff chains of that mimic rod-like polymer or biological molecules. Using them like Legos, the lab assembles chains from DNA-grafted paramagnetic particles, which line up when exposed to a magnetic field and link together where the strands of DNA meet.

The result looks like a string of beads. Depending on the length and type of the DNA linkers, the rods can be stiff or flexible. Slight variations in the paramagnetic properties of each particle account for the kinks. "We can make them robust; we can make them stable," Biswal said. "Now we're actually using them as a model for ."

See video of the microscopic rods turning

It's long been known that stiff rods in a solution rotate as they dance and are pushed by the atoms around them. Nearly two centuries ago, Robert Brown observed the rotation of flat flakes but had no way to characterize that motion. While Albert Einstein and others have since made progress in applying formulas to Brownian motion, the particulars of rotation have remained a relative mystery.

Dichuan Li, a graduate student in Biswal's lab and lead author of the new paper, was inspired to look at rotation after reading Brown's 1827 report in a classic-paper reading club. "He noticed what he thought must be axial rotation, but he wasn't able to measure how fast it was moving," Li said.

The new method is the first systematic approach to measuring the axial rotation of particles, he said. Once chains are formed, the is released and the chains are free to move in a solution between two cover plates. Li isolated and filmed the structures as they twisted, and he later analyzed the kinks to quantify the chains' motion.

The finding opens a door to further study of longer or more complex polymer or biological chains, Biswal said. She said the paramagnetic beads could be used to model rods of varying stiffness, "even more flexible structures that can actually curve and bend, just like DNA, or branch-like structures. Then we can apply forces to them and see what happens."

Biswal hopes to take a closer look at how polymers entangle in materials of varying density. "How they're stabilized by entanglement is not well understood," she said. "We're moving toward being able to create not just single chains for study, but large collections of these chains to see if they provide good models to look at things like entanglement."

Explore further: Self-assembly and chains of rotating magnetic particles

More information: Axial Thermal Rotation of Slender Rods, Phys. Rev. Lett. 106, 188302 (2011). DOI: 10.1103/PhysRevLett.106.188302

Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the presence of small kinks does not affect the chain’s axial diffusivity. Our system and measurements provide insights into fundamental axial diffusion processes of slender objects, which encompass a wide range of entities including biological filaments and linear polymer chains.

Related Stories

Self-assembly and chains of rotating magnetic particles

October 26, 2010

Dr. Park and colleagues report on a new biosensing protocol based on monitoring changes in optical transmittance of a solution containing self-assembled chains of functionalized magnetic beads being rotated by an external ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.