LLNL gamma ray spectrometer aboard spacecraft due to start orbiting around Mercury

March 15, 2011
MESSENGER readies for Mercury orbit insertion. Credit: Johns Hopkins University

(PhysOrg.com) -- When a NASA spacecraft goes into orbit around Mercury Thursday evening, a team of Lawrence Livermore National Laboratory researchers will be paying close attention.

During 2002 and 2003, the LLNL scientists developed a germanium-based gamma ray spectrometer that has been winging its way aboard the Mercury MESSENGER (short for MErcury Surface, Space Environment, GEochemistry and Ranging) for the past six-and-half years.

See video about the germanium-based gamma ray spectrometer:

The video will load shortly.

If everything goes as planned, MESSENGER will start a highly of Mercury at 6 p.m. (Pacific Daylight Time) Thursday, coming as close as 200 kilometers (120 miles) to the planet and as far as 15,000 kilometers (9,000 miles) away. It will be the first to ever orbit Mercury, circling the planet every 12 hours for one year.

The MESSENGER mission is part of NASA's Discovery Program and is led by the Johns Hopkins University Applied Physics Laboratory.

Livermore's gamma ray spectrometer will help determine the elemental and mineral composition of Mercury's surface.

"Mercury's surface is highly radioactive, so it emits a large amount of ," said LLNL physicist Morgan Burks. "By measuring the energy of the gamma rays with high resolution, it is possible to determine the composition of the planet's surface. Each element gives off a unique gamma ray signature."

It is anticipated that once the starts its orbit of Mercury that it will be one to two weeks before the gamma ray spectrometer starts sending data back to Earth.

The fundamental challenge faced by LLNL researchers was to build a gamma ray spectrometer that could withstand the extreme heat radiating from Mercury's surface, as well as the heat from the sun itself, which is 11 times brighter there than at Earth.

Mercury can reach as high as 400 degrees Celsius (752 degrees Fahrenheit). In order for the germanium-based spectrometer to operate properly, the crystal has to be cooled to -200 degrees Celsius (-330 degrees Fahrenheit).

Before this mission, it wasn't clear whether it was possible to operate a cryogenically cooled instrument near Mercury. But the team came up with a thermal and mechanical cooling design that allows the germanium crystal to live at -200 degrees Celsius while rejecting 98 percent of the infrared heat and energy from the broiling surroundings.

Before MESSENGER, only NASA's Mariner 10 spacecraft had traveled to Mercury. The spaceship performed three flybys in 1974-75 and returned the first images of Mercury to Earth. However, only 45 percent of the surface was photographed and the spacecraft contained no X-ray or gamma ray spectrometers.

Marianne Ammendolia and Morgan Burks examine the next-generation radiation detector, GeMini.

Launched in August 2004, MESSENGER will completely orbit Mercury with a suite of seven instruments, including X-ray, gamma ray, neutron and charged particle spectrometers, a laser altimeter and a magnetometer.

To orbit Mercury, MESSENGER has had to follow a path through the inner solar system, including one flyby of Earth, two flybys of Venus and three flybys of Mercury.

Traveling at 84,500 miles per hour and logging more than 4.88 billion miles so far, MESSENGER performed its flybys of Mercury on Jan. 14, 2008; Oct. 6, 2008 and Sept. 29, 2009.

The LLNL gamma ray spectrometer took data and has performed well multiple times, including during one of the flybys and during two deep space tests in 2004 and 2010, according to Burks.

"Despite the fact that the gamma ray spectrometer has passed every test performed on it in deep space, I think we'll all rest much easier once we see it operating well in the harsh thermal environment and orbit of Mercury," Burks said.

As the MESSENGER has journeyed toward its orbit of , an on-board heater has been used to repair radiation damage from the flight to the LLNL gamma ray spectrometer. To date, the crystal has been heated to 85 degrees Celsius (185 degrees Fahrenheit) on five occasions, annealing the germanium crystal and restoring it to an almost perfect crystalline structure.

There has long been a synergy for some scientific instruments, such as gamma ray spectrometers, for applications in outer space exploration and back on Earth for homeland security applications, such as to detect nuclear materials.

"The technologies that we're developing have a wide range of applications on Earth and in space," Burks said. "What we develop for basic research also allows us to do important homeland security applications. In turn, the homeland security advances we achieve help us further our basic research.

"We've taken the MESSENGER technology and used it to create the next generation hand-held gamma ray detector," he said.

The MESSENGER detector is a spinoff of the Lab's Cryo-3, a mobile hand-held mechanically cooled germanium radiation detector that can detect gamma rays from radioactive material, and was developed by Norm Madden and John Becker.

Several new LLNL radiation detectors, the GeMini and the GN-5, were designed to be about the size of a lunch box, lighter, smaller and more energy efficient than the Cryo3. Using lithium polymer batteries, the new detectors can run for 10 hours at a time, while the Cryo3 could only operate for a two-to-three hour stretch.

The GeMini and GN-5 germanium-based gamma ray spectrometers have been licensed to companies, with the GeMini is expected to go into commercial production next year.

Burks said the GeMini detector could be used at border crossings, ports, airports or anywhere else that inspectors need to check for nuclear materials, particularly plutonium or uranium. The GN-5 has been developed as a search tool, particularly for use by the Coast Guard.

High-resolution germanium-based detectors not only detect the presence of radiation, but can discriminate between benign radioactive substances, such as medical isotopes or bananas, and nuclear materials that could be used in a weapon.

"Unlike a Geiger counter, which only tells you that radioactive material is present, a germanium spectrometer will identify it," Burks said. "The readings are like a fingerprint for the material. Germanium detectors have been around for decades for use in the lab. But this instrument is so small you can carry it around in your hand."

Some of the initial engineering work for the MESSENGER detector was performed at Lawrence Berkeley National Laboratory by members of the instrument team, who later joined LLNL. Also participating in the collaboration was the UC Berkeley Space Sciences Laboratory.

Explore further: MESSENGER Goes to Mercury with NIST Calibrated Instrument

Related Stories

MESSENGER Goes to Mercury with NIST Calibrated Instrument

August 15, 2004

The first spacecraft intended to orbit Mercury was launched on Aug. 3, 2004, carrying an instrument for mapping the composition of the planet's crust that was calibrated with a novel procedure at the National Institute of ...

Space scientists set for second spacecraft flyby of Mercury

September 30, 2008

NASA's MESSENGER spacecraft, which is toting an $8.7 million University of Colorado at Boulder instrument to measure Mercury's wispy atmosphere and blistering surface, will make its second flyby of the mysterious, rocky planet ...

NASA rescheduled MESSENGER start to Mercury to August 3

August 2, 2004

Today's launch of the MESSENGER spacecraft has been canceled due to weather constraints. The launch team will try again tomorrow, August 3, at 2:15:56 a.m. MESSENGER is a scientific investigation of the planet Mercury. Understanding ...

Messenger spacecraft on way to Mercury

August 3, 2005

NASA's Messenger spacecraft swung by Earth for a Tuesday gravity assist that propelled it deeper into space on its long journey toward Mercury.

MESSENGER Spacecraft Flies by Mercury

September 30, 2009

Shortly before 5:55 p.m. EDT, MESSENGER skimmed 228 kilometers (141 miles) above the surface of Mercury in its third and final flyby of the planet.

Recommended for you

Solar minimum surprisingly constant

November 17, 2017

Using more than a half-century of observations, Japanese astronomers have discovered that the microwaves coming from the sun at the minimums of the past five solar cycles have been the same each time, despite large differences ...

Lava or not, exoplanet 55 Cancri e likely to have atmosphere

November 16, 2017

Twice as big as Earth, the super-Earth 55 Cancri e was thought to have lava flows on its surface. The planet is so close to its star, the same side of the planet always faces the star, such that the planet has permanent day ...


Adjust slider to filter visible comments by rank

Display comments: newest first

Mar 15, 2011
This comment has been removed by a moderator.
not rated yet Mar 17, 2011
On the other thread about the MESSENGER spacecraft, someone suggested that we send human explorers to Mercury. I responded that it would be a dangerous place due to being so close to the sun and not having an atmosphere or strong magnetic field. So I suggested that we send lawyers and politicians. After reading the following in the fifth paragraph here, I have changed my mind:

Mercury's surface is highly radioactive, so it emits a large amount of gamma rays

Don't just send lawyers and politicians; send ALL the lawyers and politicians.
3.5 / 5 (2) Mar 17, 2011
Unfortunately, the LLNL gamma ray spectrometer will only provide information on surface material.

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.