Cancer is a p53 protein aggregation disease

March 29, 2011, Flanders Institute for Biotechnology

Protein aggregation, generally associated with Alzheimer's and mad cow disease, turns out to play a significant role in cancer. In a paper published in Nature Chemical Biology, Frederic Rousseau and Joost Schymkowitz of VIB, K.U.Leuven and Vrije Universiteit Brussel (Belgium) describe that certain mutations of p53, an important tumor suppressor, cause the protein to misfold in a way that the proteins start to aggregate. This not only disrupts the protective function of normal p53, but of other related proteins as well.

In the study, the focus was on the which plays a key role in protecting the body against cancer. If p53 works normally, it controls cell division. If p53 control ceases - e.g. when there is a mutation in the - the cells start to divide in an uncontrolled manner and this may result in a tumor. Mutations in p53 are observed in about half of cancer cases, making the protein an important target in the development of new cancer therapies.

"We have revealed a new mechanism for the action of mutant p53," Joost Schymkowitz and Frederic Rousseau of VIB, Vrije Universiteit Brussel and K.U. Leuven say. "Mutations in p53 cause the protein to lose its protective function. The proteins change in shape, hook into each other and begin to aggregate. The active p53 disappears from the cell and can no longer carry out its control function properly." The mechanism has been encountered in about one third of .

Moreover, the mutations cause p53 to assume a completely different character. From being a protective factor, the mutated p53 changes into a substance which in fact speeds up . It seems to form aggregates with control substances (p63 and p73) in the cell, causing them to lose their function as well.

Even though the underlying principle – protein aggregation - occurs similarly in particular cancers, Alzheimer and systemic amyloidosis, the diseases are otherwise totally unconnected with each other. In , the clustering of p53 protein leads to uncontrolled cell growth. In Alzheimer, clustering of the beta-amyloid protein causes brain cells to die off.

Explore further: Effect of mutant p53 stability on tumorigenesis and drug design

More information: Jie Xu et al, Gain of function of mutant p53 by coaggregation with multiple tumor suppressors, Nature Chemical Biology.

Related Stories

Newly discovered gene plays vital role in cancer

February 27, 2009

(PhysOrg.com) -- Gene p53 protects against cancer and is usually described as the most important gene in cancer research. However, scientists at the Swedish medical university Karolinska Institutet have now shown that a previously ...

Study pinpoints protein's role in cancer spread

July 24, 2006

Edinburgh scientists have identified the way a specific cell protein can trigger the spread of cancer. The study by researchers in the Cell Signalling Unit, University of Edinburgh Cancer Research Centre could pave the way ...

Recommended for you

Wearable device measures cortisol in sweat

July 20, 2018

The hormone cortisol rises and falls naturally throughout the day and can spike in response to stress, but current methods for measuring cortisol levels require waiting several days for results from a lab. By the time a person ...

Researchers report two-faced Janus membrane applications

July 20, 2018

Named for the mythical god with two faces, Janus membranes—double-sided membranes that serve as gatekeepers between two substances—have emerged as a material with potential industrial uses. Creating two distinct "faces" ...

Chemists characterize the fatal fungus among us

July 19, 2018

Life-threatening fungal infections affect more than two million people worldwide. Effective antifungal medications are very limited. Until now, one of the major challenges is that the fungal cell wall is poorly understood, ...

Infrared sensor as new method for drug discovery

July 19, 2018

Using an infrared sensor, biophysicists at Ruhr-Universität Bochum (RUB) have succeeded in analysing quickly and easily which active agents affect the structure of proteins and how long that effect lasts. Thus, Prof Dr. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.