Muon makes tracks in EXO-200 detector

February 1, 2011 by Lori Ann White, SLAC National Accelerator Laboratory
These four lines show four different views of a single muon track, captured during initial tests of the EXO-200 detector. One track appears in each of four measurement channels and shows variations in signal strength from lower (blue and green) to higher (red) intensities over time (left to right). The timing with which each channel receives the signal allows EXO researchers to deduce the location of the track inside the detector chamber. (Image courtesy the EXO team.)

( -- The Enriched Xenon Observatory-200, a prototype observatory that will search for exotic decays of fundamental particles of matter, passed a significant if unofficial milestone last month: its detector registered the track of a cosmic-ray muon.

"For the first time we have everything going underground," said SLAC physicist and EXO collaboration member Marty Breidenbach. During commissioning of the experiment in the final two months of last year, the team filled EXO's central chamber with liquid xenon and tested the full experimental setup for the first time.

EXO-200 will use a detector filled with 200 kilograms of liquid xenon to detect a type of particle decay known as neutrinoless . Neutrinoless double-beta decay has been predicted but never seen. Seeing it—or even not seeing it within a certain time period—can help place bounds on the mass of the neutrino, that miniscule particle that streams through most matter, including us, by the billions each second with nary a clue.

Scientists also want to find out whether the neutrino is its own anti-particle, as a positron and an electron are anti-particles, canceling each other out in a flash of energy should they interact. The positron and the electron, though, differ in charge, while each neutrino of a particular flavor is an absolutely identical sibling of every other. Yet, if neutrinos are their own antiparticles, any two of the same ilk will annihilate each other should they come in contact.

To detect this phenomenon, the EXO-200 detector will look for signs from the decay of a xenon atom, including a flash of light from energetic electrons produced during the decay. So far, the EXO team has tested this setup using only liquid xenon with a natural balance of isotopes, or forms of xenon differing in the number of neutrons in each atom's nucleus, but according to Breidenbach that will change.

"As soon as possible we will move to enriched xenon," Breidenbach said when asked about next steps for the project. Using enriched xenon means the detector tank will contain 80 percent by volume xenon-136, one of a group of isotopes that—in theory—can undergo neutrinoless double beta decay. EXO team members should be able to distinguish the energy resulting from the decay of xenon-136 from that of other energetic decays, because of the precise amount of energy produced. That doesn't mean they don't need to protect their experiment from other types of radioactive decays. With detection of such a rare event as the goal, a radiologically quiet environment is an absolute must.

"We're going to add more shielding," Breidenbach said, which will help keep down the radioactive "noise." The location of the observatory helps too. It's at the north end of the Waste Isolation Pilot Plant, near Carlsbad, New Mexico, about 2000 feet underground and surrounded by salt. Breidenbach appreciates the ironies.

"WIPP is an active pilot plant for storing nuclear waste, but EXO moved in because it's so radiologically clean," he said.

If EXO-200 results show promise, an even larger EXO using even more liquid enriched —ten tons of it, in fact—will be constructed, replacing its smaller sibling in the search for fantastically rare particle decays.

Explore further: Stalking the Neutrinoless Double Beta Decay

Related Stories

Stalking the Neutrinoless Double Beta Decay

February 12, 2010

( -- The hunt for the elusive neutrino mass has officially begun. This difficult-to-detect elementary particle travels close to the speed of light, is electrically neutral, and can pass through ordinary matter ...

New results confirm standard neutrino theory

February 16, 2010

( -- In its search for a better understanding of the mysterious neutrinos, a group of experimenters at DOE’s Fermi National Accelerator Laboratory has announced results that confirm the theory of neutrino oscillations ...

CUORE experiment gets to the 'heart' of the anti-matter

January 11, 2011

Marisa Pedretti, a post-doctoral researcher since January 2009 in the Experimental Nuclear Physics group of the Physics Division of the Physical and Life Sciences Directorate, was recently selected as the experimental coordinator ...

Mining for dark matter

April 23, 2008

While much of the attention in the world of high-energy physics is focused on the Large Hadron Collider nearing completion at the European Center for Nuclear Research (CERN) near Geneva, Switzerland, other physicists, including ...

Recommended for you

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.