Understanding how cell semaphorins and plexins interact

October 20, 2010
Structures of two semaphorin-plexin complexes reveal that a common mode of interaction underlies semaphorin-plexin cell-cell signalling.

Axons are the communication channels of the body. Up to a metre in length, they connect parts of the body to the brain, carrying signals from muscles, organs and tissues. As the central nervous system develops these axons must follow very precise paths through the body. The route that they take is guided by proteins, which signal paths that the axon should and shouldn’t take. A group of proteins called semaphorins are known to be responsible for directing axons away from inappropriate areas.

However in recent years there has been increasing evidence that semaphorins and their receptors, plexins, also play a role in a number of processes including the progression of cancer. Scientists from the University of Oxford have been studying how semaphorins and plexins interact to understand how cells send signals to each other.

This research has been published in the journal Nature.

Semaphorin-plexin signalling has received a lot of attention over the last decade, for the role it plays in neural connectivity, cancer and immune response. However until now there has not been any structural information on the extracellular parts of the plexin, so the mechanism of semaphorin interaction hasn’t been resolved. The group from the University of Oxford have been using I03, one of the Macromolecular Crystallography beamlines at Diamond to determine the structure of the semaphorin-binding regions of plexins and understand the mechanism on the molecular scale.

The group found that semaphorin dimers independently bind two plexin molecules, and the signalling ability of the resulting complex depends on the strength of the combined bonds – monomeric semaphorin can bind to plexin but doesn’t result in signalling.

“The data we collected at Diamond have allowed us view in atomic level detail the triggering of the signals that help wire up our nervous system," said Professor Yvonne Jones, University of Oxford.

Explore further: Prostate cancer spurs new nerves

More information: Structural basis of semaphorin–plexin signalling, Bert J. C. Janssen, et al. Nature, Sept 2010 DOI: 10.1038/nature09468

Related Stories

Prostate cancer spurs new nerves

December 1, 2008

Prostate cancer – and perhaps other cancers – promotes the growth of new nerves and the branching axons that carry their messages, a finding associated with more aggressive tumors, said researchers from Baylor College ...

Scientists discover a controller of brain circuitry

December 28, 2009

By combining a research technique that dates back 136 years with modern molecular genetics, a Johns Hopkins neuroscientist has been able to see how a mammal's brain shrewdly revisits and reuses the same molecular cues to ...

EphA4 -- the molecular transformer

October 23, 2009

(PhysOrg.com) -- EphA4 is a protein which is attached to the surfaces of many types of human cells and plays a role in a wide range of biological processes. EphA4 functions by binding to ephrin ligands, cell surface proteins ...

Recommended for you

Fluorescent probe could light up cancer

March 28, 2017

A fluorescent probe developed by Michigan Tech chemist Haiying Liu illuminates the enzyme beta-galactosidase in a cell culture, which could help cancer surgeons.

How does oxygen get into a fuel cell?

March 28, 2017

In order for a fuel cell to work, it needs an oxidizing agent. TU Wien has now found a way to explain why oxygen does not always enter fuel cells effectively, rendering them unusable.

Zika virus protein mapped to speed search for cure

March 27, 2017

A study published today shows how Indiana University scientists are speeding the path to new treatments for the Zika virus, an infectious disease linked to birth defects in infants in South and Central America and the United ...

Researchers link orphan receptor to opioid-induced itching

March 27, 2017

Opioids have long been an important tool in the world of pain management, but the side effects of these drugs - from addiction and respiratory failure to severe itching and dizziness, can be overwhelming. Scientists have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.