Safer swiping while voting and globetrotting

April 15, 2010, Tel Aviv University
This is a home-made, extended-range RFID antenna made from cooking gas copper pipes in Professor Wool's lab. Credit: AFTAU

Since 2007, every new U.S. passport has been outfitted with a computer chip. Embedded in the back cover of the passport, the "e-passport" contains biometric data, electronic fingerprints and pictures of the holder, and a wireless radio frequency identification (RFID) transmitter.

Although the system was designed to operate at close range, were able to access it from afar — until research by Prof. Avishai Wool of Tel Aviv University's Blavatnik School of Computer Sciences helped ensure that the computer chip in American e-passports could be read only when the passport is opened. The research has been cited by organizations including the Electronic Frontier Foundation.

Now, a new study from Prof. Wool finds serious security drawbacks in similar chips that are being embedded in credit, debit and "smart" cards. The vulnerabilities of this electronic approach ― and the of the private information contained in the chips ― are becoming more acute. Using simple devices constructed from $20 disposable cameras and copper cooking-gas pipes, Prof. Wool and his students have demonstrated how easily the cards' radio frequency (RF) signals can be disrupted. The work will be presented at the IEEE RFID conference in Orlando, FL, this month.

More than one way to hack a chip

Prof. Wool's most recent research centers on the new "e-voting" technology being implemented in Israel. "We show how the Israeli government's new system based on the RFID is a very risky approach for security reasons. It allows hackers who are not much more than amateurs to break the system," Prof. Wool explains. "One way to catch hackers, criminals and terrorists is by thinking like one."

In his lab, Prof. Wool constructed an attack mechanism -- an RFID "zapper"― from a disposable camera. Replacing the camera's bulb with an RFID antenna, he showed how the EMP (electro-magnetic pulse) signal produced by the camera could destroy the data on nearby RFID chips such as ballots, credit cards or passports. "In a voting system, this would be the equivalent of burning ballots ― but without the fire and smoke," he says.

Another attack involves jamming the radio frequencies that read the card. Though the card's transmissions are designed to be read by antennae no more than two feet distant, Prof. Wool and his students demonstrated how the transmissions can be jammed by a battery-powered transmitter 20 yards away. This means that an attacker can disable an entire voting station from across the street. Similarly, a terror group could "jam" passport systems at U.S. border controls relatively easily, he suggests.

The most insidious type of attack is the "relay attack." In this scenario, the voting station assumes it is communicating with an RFID ballot near it ― but it's easy for a hacker or terrorist to make equipment that can trick it. Such an attack can be used to transfer votes from party to party and nullify votes to undesired parties, Prof. Wool demonstrates. A relay attack may also be used to allow a terrorist to cross a border using someone else's e-passport.

How to make "smart cards" smarter

"All the new technologies we have now seem really cool. But when anything like this first comes onto the market, it will be fraught with security holes," Prof. Wool warns. "In America the Federal government poured a lot of money into e-voting, only to discover later that the deployed systems were vulnerable. Over the last few years we've seen a trend back towards systems with paper trails as a result."

But there are some small steps that can be taken to make smart cards smarter, says Prof. Wool. The easiest one is to shield the card with something as simple as aluminium foil to insulate the e-transmission. In the case of e-voting, a ballot box could be made of conductive materials. The State Department has already taken Prof. Wool's advice: since 2007, they've also added conductive fibres to the back of every American .

Explore further: Biometric Passport Control: No Place To Hide

Related Stories

Biometric Passport Control: No Place To Hide

September 25, 2007

Siemens is making border crossings in Europe more secure through biometric systems that store individual characteristics such as fingerprints and facial photos on a chip integrated into a passport.

Special alloy sleeves urged to block hackers?

July 12, 2009

(AP) -- To protect against skimming and eavesdropping attacks, federal and state officials recommend that Americans keep their e-passports tightly shut and store their RFID-tagged passport cards and enhanced driver's licenses ...

Researchers to Boost 'Smart Tag' Security

September 26, 2006

Johns Hopkins researchers will take part in a new multi-institution project to improve the security of "smart tags," the wireless devices that allow drivers to zip through automatic tollbooths and let workers enter a secured ...

Recommended for you

Cryptocurrency rivals snap at Bitcoin's heels

January 14, 2018

Bitcoin may be the most famous cryptocurrency but, despite a dizzying rise, it's not the most lucrative one and far from alone in a universe that counts 1,400 rivals, and counting.

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 15, 2010
My bank recently issued me a new chip card, and I have had no intention to activate it until issues such as these have been dealt with effectively and permanently. Feedback response is still pending from the institution at this point.
not rated yet Apr 16, 2010
I have every intention of disabling any RFID device that I run into, they are bugs that broadcast what they are and where they are. Disable them all, buy a neon sign transformer and just give them a quick zap with 6,000+ volts; That will fix it so it's no longer a threat to your privacy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.