Z-contrast microscope first to resolve, identify individual light atoms

March 24, 2010

(PhysOrg.com) -- Using the latest in aberration-corrected electron microscopy, researchers at the Department of Energy's Oak Ridge National Laboratory and their colleagues have obtained the first images that distinguish individual light atoms such as boron, carbon, nitrogen and oxygen.

The ORNL images were obtained with a Z-contrast scanning (STEM). Individual atoms of carbon, boron, nitrogen and oxygen--all of which have low atomic numbers--were resolved on a single-layer boron nitride sample.

"This research marks the first instance in which every atom in a significant part of a non-periodic material has been imaged and chemically identified," said Materials Science and Technology Division researcher Stephen Pennycook. "It represents another accomplishment of the combined technologies of Z-contract STEM and aberration correction."

Pennycook and ORNL colleague Matthew Chisholm were joined by a team that includes Sokrates Pantelides, Mark Oxley and Timothy Pennycook of Vanderbilt University and ORNL; Valeria Nicolosi at United Kingdom's Oxford University; and Ondrej Krivanek, George Corbin, Niklas Dellby, Matt Murfitt, Chris Own and Zotlan Szilagyi of Nion Company, which designed and built the microscope. The team's Z-contrast STEM analysis is described in an article published today in the journal Nature.

The new high-resolution imaging technique enables materials researchers to analyze, atom by atom, the molecular structure of experimental materials and discern structural defects in those materials. Defects introduced into a material--for example, the placement of an impurity atom or molecule in the material's structure--are often responsible for the material's properties.

The group analyzed a monolayer hexagonal sample prepared at Oxford University and was able to find and identify three types of atomic substitutions--carbon atoms substituting for boron, carbon substituting for nitrogen and oxygen substituting for nitrogen. Boron, carbon, nitrogen and oxygen have atomic numbers--or Z values-- of five, six, seven and eight, respectively.

The annular dark field analysis experiments were performed on a 100-kilovolt Nion UltraSTEM microscope optimized for low-voltage operation at 60 kilovolts.

Aberration correction, in which distortions and artifacts caused by lens imperfections and environmental effects are computationally filtered and corrected, was conceived decades ago but only relatively recently made possible by advances in computing. Aided by the technology, ORNL's group set a resolution record in 2004 with the laboratory's 300-kilovolt STEM.

The recent advance comes at a much lower voltage, for a reason.

"Operating at 60 kilovolts allows us to avoid atom-displacement damage to the sample, which is encountered with low Z-value above about 80 kilovolts," Pennycook said. "You could not perform this experiment with a 300-kilovolt STEM."

Armed with the high-resolution images, materials, chemical and nanoscience researchers and theorists can design more accurate computational simulations to predict the behavior of advanced materials, which are key to meeting research challenges that include energy storage and energy efficient technologies.

Explore further: Nanoscale view of energy storage

Related Stories

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Laboratory perfects metal powders for manufacturing

January 12, 2017

Iver Anderson and Emma White, metallurgists at Ames Laboratory, like to show off samples of metal powders encapsulated in custom-made hourglasses to visitors. Dull gray, the powders are barely remarkable in and of themselves, ...

Close up of the new mineral merelaniite

October 28, 2016

A team led by a physicist from Michigan Technological University has discovered a new mineral, named for the region in Tanzania where it comes from.

Recommended for you

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Phase transition discovery opens the door to new electronics

January 16, 2017

A group of European scientists led by researchers at TU Delft has discovered how phase transitions propagate throughout materials called nickelates. The discovery improves our understanding of these novel materials, which ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

6 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Foundation
5 / 5 (1) Mar 24, 2010
"Micoralgae under an electron microscope."
Isn't the image a regular optical microscope?
Megadeth312
Mar 24, 2010
This comment has been removed by a moderator.
brainiac125
not rated yet Mar 24, 2010
Same thing I thought. I wouldn't expect that kind of grave error from a science news source.
gunslingor1
not rated yet Mar 24, 2010
Where are the pictures??
Bob_B
not rated yet Mar 24, 2010
Looking for defects - atom-by-atom. Now that has to be a boring job...it seems like it has real job security though!
gunslingor1
5 / 5 (1) Mar 25, 2010
Looking for defects - atom-by-atom. Now that has to be a boring job...it seems like it has real job security though!


That's funny, but the applications are endless.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.