Metal oxide 'can transform'

February 15, 2010, Oxford University

Model of the surface of strontium titanate.
(PhysOrg.com) -- A team including Oxford University scientists has been investigating what happens to the top layer of atoms on the surface of a material that splits water and has potential uses in nanoelectronics.

An international team, including Oxford University scientists, has been investigating what happens to the top layer of on the surface of a material.

The material is strontium titanate: a complex that many researchers are interested in because of its ability to split water into hydrogen and oxygen with sunlight and its potential for use in .

The team used a variety of techniques including (STM) to directly ‘see’ the arrangement of surface atoms. Their observations, reported in this week’s , reveal a series of structures with a surprisingly close and orderly arrangement.

‘In most materials, when you create a surface, the top layer of atoms rearrange to different positions from those in the rest of the material. This rearrangement of atoms is usually locked into a particular configuration that will minimise the surface energy.’ said Dr Martin Castell of Oxford University’s Department of Materials, an author of the paper. ‘However, this is not the case for the surface of strontium titanate that we have been studying. This surface forms a whole family of different structures. Chemists would call these structures a homologous series - something that is routinely observed in the bulk of crystals, but not until now on the surface.’

These ‘transformations’ could prove very important to researchers hoping to use strontium titanate in order to build new kinds of nanoelectronic devices or to grow .

The report also suggests that the techniques developed by the researchers could make it possible to predict the structures of other oxides.

'We have needed to use many different sophisticated experimental and theoretical approaches to solve this problem,' said Dr Castell. 'Our aim is to continue to work closely with our collaborators at Northwestern University in the US to solve related materials problems.'

The research was conducted by a team was led by Dr Martin Castell of Oxford University UK and Professor Laurence Marks and Professor Ken Poeppelmeier of Northwestern University, USA.

Explore further: New Nanotechnology Discovery Controls Electronic Properties of High-K Oxides

More information: A report of the research, ‘A homologous series of structures on the surface of SrTiO3 (110)’, is published in this week’s Nature Materials. (www.nature.com/nmat/journal/va … t/full/nmat2636.html)

Related Stories

Experiments Prove Existence of Atomic Chain Anchors

February 3, 2005

Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the “links” in the chain, according to new measurements by physicists at the National Institute of Standards and Technology ...

Nanoscale materials grow with the flow (Videos)

February 12, 2009

Imagine unloading a pile of bricks onto the ground and watching the bricks assemble themselves into a level, straight wall in only a few minutes. While merely a fantasy for builders in the everyday world, these types of self-assembled ...

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Researchers engineer a tougher fiber

February 22, 2019

North Carolina State University researchers have developed a fiber that combines the elasticity of rubber with the strength of a metal, resulting in a tougher material that could be incorporated into soft robotics, packaging ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.