Water hits and sticks: Findings challenge a century of assumptions about soil hydrology

Researchers have discovered that some of the most fundamental assumptions about how water moves through soil in a seasonally dry climate such as the Pacific Northwest are incorrect - and that a century of research based on those assumptions will have to be reconsidered.

A new study by scientists from Oregon State University and the Environmental Protection Agency showed - much to the surprise of the researchers - that clings tenaciously to the first precipitation after a dry summer, and holds it so tightly that it almost never mixes with other .

The finding is so significant, researchers said, that they aren't even sure yet what it may mean. But it could affect our understanding of how pollutants move through soils, how nutrients get transported from soils to streams, how streams function and even how vegetation might respond to .

The research was just published online in Nature Geoscience, a professional journal.

"Water in mountains such as the Cascade Range of Oregon and Washington basically exists in two separate worlds," said Jeff McDonnell, an OSU distinguished professor and holder of the Richardson Chair in Watershed Science in the OSU College of Forestry. "We used to believe that when new precipitation entered the soil, it mixed well with other water and eventually moved to streams. We just found out that isn't true."

"This could have enormous implications for our understanding of watershed function," he said. "It challenges about 100 years of conventional thinking."

What actually happens, the study showed, is that the small pores around fill with water that gets held there until it's eventually used up in plant transpiration back to the atmosphere. Then new water becomes available with the return of fall rains, replenishes these small localized reservoirs near the plants and repeats the process. But all the other water moving through larger pores is essentially separate and almost never intermingles with that used by plants during the dry summer.

The study found in one test, for instance, that after the first large rainstorm in October, only 4 percent of the precipitation entering the soil ended up in the stream - 96 percent was taken up and held tightly by soil around plants to recharge soil moisture. A month later when soil moisture was fully recharged, 55 percent of precipitation went directly into streams. And as winter rains continue to pour moisture into the ground, almost all of the water that originally recharged the soil around plants remains held tightly in the soil - it never moves or mixes.

"This tells us that we have a less complete understanding of how water moves through soils, and is affected by them, than we thought we did," said Renee Brooks, a research plant physiologist with the EPA and courtesy faculty in the OSU Department of Forest Ecosystems and Society.

"Our mathematical models of ecosystem function are based on certain assumptions about biological processes," Brooks said. "This changes some of those assumptions. Among the implications is that we may have to reconsider how other things move through soils that we are interested in, such as nutrients or pollutants."

The new findings were made possible by advances in the speed and efficiency of stable isotope analyses of water, which allowed scientists to essentially "fingerprint" water and tell where it came from and where it moved to. Never before was it possible to make so many isotopic measurements and get a better view of water origin and movement, the researchers said.

The study also points out the incredible ability of plants to take up water that is so tightly bound to the soil, with forces nothing else in nature can match.

Explore further

Where is your soil water? Crop yield has the answer

Citation: Water hits and sticks: Findings challenge a century of assumptions about soil hydrology (2010, January 21) retrieved 16 September 2019 from https://phys.org/news/2010-01-century-assumptions-soil-hydrology.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Jan 21, 2010
kudos to this study. That does explain a few observations I have made and makes a lot of sense. I can see dry climate agriculture may become more efficient by farmers taking this information into account when fertilizing and spraying for weeds.

Jan 21, 2010
Apparently, plants are somehow influencing conditions in the soil(and possibly other biota) in the immediate environment to effect this water retention. Since they grab and hold onto this first rainfall, it seems that they would be inordinately affected by pollutants that may have built up in the "unwashed air" that has developed after 3-4 months without rainfall. For the same reason, as you say, @jsa09- this would likely affect uptake of fertilizer/insecticide, as well.

Jan 21, 2010
I don't have any experience in arid climates, but this is counter what I have experienced as a greenhouse grower. Dry soil in a pot frequently absorbs as little as 10% of the water it receives.

@jsa09 - could you elaborate on your observations? I'd be interested in seeing how yours differ from mine.

Jan 22, 2010
So, Whats is new in the finding? I couldn't understand it propoerly. What it does say is that - in simpler words- the micro pores fills first and then the macro pores. And both are not interlinked each other. The runoff or baseflow will be the water held in macro pores only as the water held in the micro pores are under stronger cohensive force. During second or supplemental irrigation as the micro pores are already filled up more water is available for the stream flow (either by run off or baseflow) . These are good old theories. I failed to understand anything new in it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more