Study Reveals Unexpected Ancient Cellular Structure

September 10, 2009,

( -- Scientists at North Carolina State University have effectively lifted the veil from the structure of an ancient and important RNA-protein complex essential for the biosynthesis and function of the ribosome, the protein-manufacturing machine of all cells. This RNA-protein enzyme performs a critical task in modifying the nucleotides of ribosomal RNA, modifications that are essential for protein synthesis.

A study published in the Sept. 11 edition of the journal Science reveals a surprising two-part, or dimeric, structure for the so-called box C/D small ribonucleoprotein (RNP) complex in Archaea, the kingdom of tiny, single-celled organisms without nuclei. The complex comprises a single RNA component bound with multiple bound proteins. Conventional theory suggested that the structure of this RNP was smaller and monomeric.

Understanding more about the architecture of this RNP complex in Archaea is important, says Dr. E. Stuart Maxwell, professor of molecular and structural biochemistry at NC State and a co-author of the paper describing the research, because Archaea can serve as a for the study of RNPs in larger and more complex eukaryotic organisms. Knowing more about this RNP structure should provide scientists with clues as to how the eukaryotic ribosome is synthesized and functions.

“For the first time, we’ve been able to provide some insight into the organization of this essential RNP complex,” Maxwell says. “An important implication is that this RNP complex appears to undergo large conformational changes, as some of the proteins make large back-and-forth movements to accomplish their task in nucleotide modification.”

Maxwell adds that this ancient RNP complex has existed for more than 2 billion years, arising before the kingdoms of Archaea and Eukarya diverged. Eukaryotic cells, which include a nucleus, have maintained this RNP for its essential role in ribosome and function. The strong conservation of this ancient RNA-protein enzyme highlights its importance, Maxwell adds.

In addition to NC State post-doctoral researcher Keith T. Gagnon, scientists from Yale University - including senior investigator Dr. Susan Baserga - and Harvard University co-authored the paper.

More information: “A Dimeric Structure for Archaeal Box C/D Small Ribonucleoproteins” Authors: Keith T. Gagnon, Bernard Brown, and E. Stuart Maxwell, North Carolina State University; Franziska Bleichert, Vinzenz M. Unger and Susan J. Baserga, Yale University; Andres E. Leschziner, Harvard University; Published: Sept. 11, 2009, in Science.

Provided by North Carolina State University (news : web)

Explore further: Molecular sleuths track evolution through the ribosome

Related Stories

Molecular sleuths track evolution through the ribosome

August 18, 2008

A new study of the ribosome, the cell's protein-building machinery, sheds light on the oldest branches of the evolutionary tree of life and suggests that differences in ribosomal structure between the three main branches ...

Biologists probe the machinery of cellular protein factories

September 13, 2006

Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.