Scientists Measure Differences Between Normal and Cancer Cell Surfaces

May 5, 2009 by Laura Mgrdichian, Phys.org weblog

Scanning electron microscope images of a cancerous (left) and normal cell, showing the differences in cell "brush." Image courtesy Igor Sokolov.
(PhysOrg.com) -- Scientists know that cancerous cells and normal cells have different physical features, but the details of these differences, and why they occur, are not well understood. In a recent edition of Nature Nanotechnology, researchers report measurements of certain physical differences between the surfaces of normal and cancerous cells, suggesting a new way to characterize cancer cells and a possible route for detection.

The group, composed of researchers from the Nanoengineering and Biotechnology Laboratories Center at Clarkson University, was studying human cervical . Led by Igor Sokolov, they focused on the cells' surface features, including microridges and hair-like microvilii, which, perhaps acting like sensors, are one key way that the cells interact with their environment. Together, these features form a cell's "brush."

They found that normal cervical cells tend to have a brush layer consisting of a single average length - 2.4 micrometers (millionths of a meter) - while the have mostly two typical lengths - 2.6 and 0.45 micrometers. Additionally, their analysis showed that the long cancer-cell brush is about half as dense as that of the normal-cell brush while the short cancer-cell brush is more than twice as dense.

The group made these findings using an (AFM), a high-resolution device that can resolve details down to a fraction of a nanometer. The AFM works by scanning a surface with a tiny cantilever, a beam supported on one end so that it can move up and down. In an AFM, the beam is tipped with a nanometer-scale curved needle often made of silicon or silicon nitride. When brought near a sample, forces between the needle tip and the surface cause the cantilever to deflect. When the entire surface is scanned, the result is a set of force data that represents a surface map of the sample. By analyzing the forces, researchers can recover the nature and type of surface interactions.

In previous studies, scientists treated the surface of a cell as flat. In their work, the Clarkson researchers used various supporting techniques, including electron microscopy and confocal scanning laser microscopy, to show that the cell surface is sufficiently "brushy" to be visible in the AFM data. The researchers processed the forces using a "brush on soft surface" model, the type of model used to study polymer brushes (polymer chains tethered to a surface). Prior to this work, scientists had not looked at cell brush in this way.

The AFM method has an edge over other microscopy techniques, such as electron microscopy, because it can work with viable cells, avoiding misrepresentations of the cell structure and saving time on sample preparation.

More information: Nature Nanotechnology advance online publication 12 April 2009, DOI:10.1038/nnano.2009.77

© 2009 PhysOrg.com

Explore further: Molecular Imaging of Cells Likely with New Take on Atomic Force Microscopy

Related Stories

New ORNL process brings nanoparticles into focus

June 23, 2008

Scientists can study the biological impacts of engineered nanomaterials on cells within the body with greater resolution than ever because of a procedure developed by researchers at the Department of Energy's Oak Ridge National ...

New highly sensitive AFM revolutionizes nano imaging

February 9, 2006

While a microphone is useful for many things, you probably wouldn't guess that it could help make movies of molecules or measure physical and chemical properties of a material at the nanoscale with just one poke.

Recommended for you

Study suggests trees are crucial to the future of our cities

March 25, 2019

The shade of a single tree can provide welcome relief from the hot summer sun. But when that single tree is part of a small forest, it creates a profound cooling effect. According to a study published today in the Proceedings ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.