Tiny delivery system with a big impact on cancer cells

December 15, 2008
A new group of nanocomposite particles could lead to improved anti-cancer drugs, researchers report. Credit: Hari S. Muddana

Researchers in Pennsylvania are reporting for the first time that nanoparticles 1/5,000 the diameter of a human hair encapsulating an experimental anticancer agent, kill human melanoma and drug-resistant breast cancer cells growing in laboratory cultures. The discovery could lead to the development of a new generation of anti-cancer drugs that are safer and more effective than conventional chemotherapy agents, the scientists suggest. The research is scheduled for the Dec. 10 issue of ACS' Nano Letters.

In the new study, Mark Kester, James Adair and colleagues at Penn State's Hershey Medical Center and University Park campus point out that certain nanoparticles have shown promise as drug delivery vehicles. However, many of these particles will not dissolve in body fluids and are toxic to cells, making them unsuitable for drug delivery in humans. Although promising as an anti-cancer agent, ceramide also is insoluble in the blood stream making delivery to cancer cells difficult.

The scientists report a potential solution with development of calcium phosphate nanocomposite particles (CPNPs). The particles are soluble and with ceramide encapsulated with the calcium phosphate, effectively make ceramide soluble. With ceramide encapsulated inside, the CPNPs killed 95 percent of human melanoma cells and was "highly effective" against human breast cancer cells that are normally resistant to anticancer drugs, the researchers say.

Penn State Research Foundation has licensed the calcium phosphate nanocomposite particle technology known as "NanoJackets" to Keystone Nano, Inc. MK and JA are CMO and CSO, respectively.

Article: "Calcium Phosphate Nanocomposite Particles for In Vitro Imaging and Encapsulated Chemotherapeutic Drug Delivery to Cancer Cells", pubs.acs.org/stoken/presspac/p … ll/10.1021/nl802098g

Provided by ACS

Explore further: Radiation and pulmonary fibrosis

Related Stories

Radiation and pulmonary fibrosis

November 16, 2017

Radiation-induced pulmonary fibrosis—tissue scarring that can permanently impair lung function—limits the delivery of therapeutic radiation doses to non-small cell lung cancer.

More early stage lung cancer patients survive the disease

October 26, 2017

With the advancement of surgical and radiation therapy strategies for stage 1 non-small-cell lung cancer (NSCLC), more patients are being treated, resulting in higher survival rates, according to a study published online ...

Recommended for you

The microscopic origin of efficiency droop in LEDs

November 21, 2017

Light-emitting diodes—or LEDs, as they are commonly known—have been slowly replacing incandescent light bulbs in applications ranging from car taillights to indicators on electronics since their invention in the 1960s.

Borophene shines alone as 2-D plasmonic material

November 20, 2017

An atom-thick film of boron could be the first pure two-dimensional material able to emit visible and near-infrared light by activating its plasmons, according to Rice University scientists.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
1 / 5 (1) Dec 16, 2008
o.k.! Whatever works that can be brought to market!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.