Measuring sound with a nanoscopic air bubble

December 4, 2008
In the ultrasound sensor, the interface between water and air acts as a membrane. The vibrations of this membrane are measured using light.

(PhysOrg.com) -- It will soon be possible to measure ultrasonic sound using water, air, light and nanotechnology – over a hundred times more accurately than with existing sensors.

This innovative method is based on a new principle for an ultrasound sensor developed by Helmut Rathgen of the University of Twente, Netherlands. The new sound sensor enables accurate ultrasound scans with a small mobile device and can be used to improve the sonar equipment used on boats. Mr Rathgen was awarded his doctorate on 3 December at the faculty of Science and Technology.

The sensor designed by Helmut Rathgen consists of a glass fibre in which a hole measuring a few hundred nanometres has been bored; a hole many times smaller than a hair. The fibre is placed in a water droplet, so that a miniscule air bubble is created in the cavity. The interface between this air bubble and the water acts as a membrane which begins to vibrate under the influence of ultrasonic sound. The intensity of the sound can be determined by measuring the extent to which the interface vibrates.

The extent of this vibration is measured using a beam of light that is led through the glass fibre. Some of the light reflects against the interface. If the interface begins to vibrate, the intensity of the ultrasonic sound can be determined on the basis of the change in the reflection of the light.

Mobile ultrasound scans

The new sensor is over a hundred times more accurate than existing ultrasonic sound sensors and can be used for many applications. For instance, the sensor can be used in ships which, just like bats, make use of ultrasonic sound to map their environment. The sensor can also be used to improve medical sound scanning. Scans are used for various purposes including following the growth of unborn babies in the uterus. Since the sensor measures very accurately, the body only has to send out a very weak signal to be picked up. This means that it will be possible to make ultrasound scans with a small, battery-powered mobile device in the future.

The PhD student was presented with the NanoNed Innovation Award for his invention on 19 November. The objective of this prize is to encourage young researchers to translate their scientific work into a business idea that meets a demonstrable market need.

The University of Twente has applied for a patent on the invention and will be developing the principle into a ready-to-use product in cooperation with a company in the region.

Provided by University of Twente

Explore further: Team focus is on ultrasound window into the human body

Related Stories

Team focus is on ultrasound window into the human body

October 30, 2017

(Tech Xplore)—A surgeon diagnosed his own cancer with the help of a phone. That is the attention-grabbing line that has turned people's attention to a new device to ship next year. It is the Butterfly iQ, a portable ultrasound ...

Fingerprint tech from Qualcomm uses ultrasonic sound waves

March 3, 2015

Password-less authentication to protect user data—we have heard the call into the future from tech giants before and for good reason: Users are frustrated over having to remember numerous password combinations to enter ...

Vortex robot wants to join kids for play and programming

July 10, 2015

You can't argue with doting parents. From yesterday's huggable teddy bears to fingerpaint sets to today's cute spaceman robots, they easily conclude there is always room for one more toy. This time around, a robot called ...

Heat-resistant ultrasonic transducers

May 2, 2017

Technical systems must be regularly checked for defects, such as cracks. Up to now, piezo sensors measuring pressure, force or voltage have been used to reliably detect such faults – but only to around 200 degrees Celsius. ...

Recommended for you

The microscopic origin of efficiency droop in LEDs

November 21, 2017

Light-emitting diodes—or LEDs, as they are commonly known—have been slowly replacing incandescent light bulbs in applications ranging from car taillights to indicators on electronics since their invention in the 1960s.

Borophene shines alone as 2-D plasmonic material

November 20, 2017

An atom-thick film of boron could be the first pure two-dimensional material able to emit visible and near-infrared light by activating its plasmons, according to Rice University scientists.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.