Nanocomposite labeled cancer cells can be targeted and destroyed using lasers

May 20, 2007

A nanocomposite particle can be constructed so that it has a mix of properties that would not otherwise happen in nature. By combining an organic matrix with metallic clusters that can absorb light, it is possible to incorporate such particles into cells and then destroy those targeted cells with a laser.

In a presentation at the NSTI Nanotech 2007 Conference, researchers describe work conducted at the NanoBiotechnology Center, Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY and the University of Michigan, Ann Arbor, MI, regarding the creation and characterization of a dendrimer nanocomposite (DNC) matrix containing silver clusters that can be used to target and destroy melanoma cancer cells.

Composite NanoDevices (CNDs), are an emerging class of hybrid nanoparticulate materials. CNDs are made from dendrimer-based polymers, for example from poly(amidoamine) [(PAMAMs)].

To visualize the device, Dr. Lajos P. Balogh says simply think of nanoscale, dense, but soft "tumbleweed," where clusters of inorganic materials (such as silver) can be trapped inside. The CND "tumbleweed" device can be made in discrete sizes, carry different electric charges and can encapsulate different materials inside. This design offers researchers a wider choice of size, surface functionality and payload than traditional small in vivo devices where the agent is conjugated directly to the surface.

A laser can be used to kill cells indiscriminately, but it is really a blunt instrument. High powered lasers do so much damage that the tissue becomes opaque to further light. Yet, lower-powered lasers do not deliver enough energy to kill cells. By labeling cells with CNDs, light absorption can be selectively and locally enhanced wherever composite nanodevices are present. Irradiation of the mix of labeled and unlabeled cells by laser light, causes tiny bubbles to form that disrupt and damage the labeled cells, but leave unlabeled cells unaffected. This technology holds promise as an alternative therapy for cancer patients.

According to Dr. Balogh, "The DNC is a multi-functional platform. Because it can carry multiple agents inside, yet present a simple outer surface to the body, it can be programmed to deliver those agents to a particular organ or tissue."

Source: Elsevier Health Sciences

Explore further: Cancer and the artillery of physics

Related Stories

Cancer and the artillery of physics

March 13, 2018

Not long ago, here is what Andrew Ewald did to study cancer. Instead of starting with the conventional research cell lines, he got breast cancer cells from the primary tumors of actual patients. That is, not models standing ...

Helicobacter creates immune system blind spot

March 13, 2018

The gastric bacterium H. pylori colonizes the stomachs of around half the human population and can lead to the development of gastric cancer. It is usually acquired in childhood and persists life-long, despite a strong inflammatory ...

Thirdhand smoke found to increase lung cancer risk in mice

March 9, 2018

Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) identified thirdhand smoke, the toxic residues that linger on indoor surfaces and in dust long after a cigarette has been extinguished, ...

Study sheds new light on Von Hippel-Lindau syndrome

March 12, 2018

Investigators at Vanderbilt-Ingram Cancer Center (VICC) and the Virginia Tech Carilion Research Institute (VTCRI) have revealed a gene mutation's role in Von Hippel-Lindau syndrome, a genetically inherited disease which causes ...

Recommended for you

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.