Bat flight generates complex aerodynamic tracks

May 10, 2007
Cover of Science -- A Bat, Glossophaga soricina
On the cover of Science: A bat, Glossophaga soricina, in flight in a wind tunnel at Lund University, Sweden. The velocity field induced by the wingbeat is shown superimposed and to scale. The bat wake reconstructions have features that have not been observed in similar-sized birds. Membranous and feathered wings of natural and engineered flyers may have significantly different aerodynamic properties. Credit: Lund University, Sweden

Bats generate a measurably distinct aerodynamic footprint to achieve lift and maneuverability, quite unlike birds and contrary to many of the assumptions that aerodynamicists have used to model animal flight, according to University of Southern California aerospace engineer Geoffrey Spedding.

The researcher, together with a multi-institutional team of scientists found that bat flight is quite different from bird flight, particularly at very small scales. They based their findings on new measurements of aerodynamic performance in the wing beats of a small species of bat.

"Bats with a body mass of 10 – 30 grams — or about the weight of one or two teaspoons of sugar — and tip-to-tip wing spans of 25 – 30 centimeters — about the length of a human hand — generate very different wakes," he reported in the May 11, 2007 issue of Science.

"The tell-tale tracks in the airflow caused by the wing beat have a very different pattern for bats, and this difference can be traced to the peculiar upstroke," he continued. "That, in turn, is likely caused by the collapsible membrane of the bat’s wing, which needs to maintain some degree of tension."

His research group’s findings are presented in an article titled "Bat Flight Generates Complex Aerodynamic Tracks." Coauthors included A. Hedenström, L. C. Johansson and M. Wolf of Lund University, Sweden; R. von Busse of the University of Munich, Germany; and Y. Winter at Bielefeld University in Germany.

Bats constitute about 20 percent of mammalian species, but not much attention has been paid to them because of their nocturnal habits. Most bats eat flying insects, consuming up to their body weight each night. Their agility and tremendous ability to maneuver in flight is accentuated by their ability to locate prey using an advanced echo-location system, which is basically a sonar operated by ultrasound.

The authors noted that bat wings are very different from those of birds because of their separate evolutionary paths to flight.

"Instead of feathers projecting back from lightweight, fused arm and hand bones, bats have flexible, elastic membranes that stretch between specially extended, slender bones of the hand," Spedding said. "The bones and wing membrane both change shape with every wing beat, flexing in response to the balance between forces applied by the muscles and competing forces due to the air motion around them. "

In contrast with bird wings, the bat wing membrane must be kept under tension, otherwise it will flap uselessly, like a flag. As a consequence, Spedding said, there are limits to how much the wing can be folded during flight.

Spedding and his colleagues think that the unique aerodynamic wake signatures of bat wings are caused by different mechanical operations in the upstroke of the wingbeat.

"Where birds can feather their wings, opening the feathers like a Venetian blind, bats must do something different," Spedding said. "Hence, they have developed a twisting wing path that increases the lift during the upstroke."

This is the first time that this positive aerodynamic effect has been observed in wing flapping, he said, and it is consistent with previous speculation that was based on the bat’s complicated wing motions alone.

Spedding said the findings are just the beginning of an exciting research program to make detailed measurements of bat wings and add to a growing body of data about bat flight.

"Bats are agile hunters, capable of plotting and executing complex maneuvers through cluttered environments," he said. "These are the traits we’d like our unmanned air vehicles to have because there are so many complex rural and urban environments in which we could use them."

With the promise of human-engineered, micro-scale flight just around the corner, engineers may also be able to emulate bat wings, building simple mechanical wings of flexible, elastic material stretched over support rods, to improve the aeronautical performance of smaller airborne vehicles.

"Bats have relied on very flexible wings for 50 million years to propel and lift themselves into the sky," Spedding said. "We still have a lot more to learn about the aerodynamics of bat flight and how their wings allow them to maneuver through incredibly unsteady air flows and turbulent conditions."

For a brief video clip of a bat at a feeder, taken at Lund University, Sweden, visit: viterbi.usc.edu/images/video/bat_flying.wmv

Source: University of Southern California

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

Ornithologists discover flight causes genome shrinkage

Mar 06, 2014

(Phys.org) —It has long been known that birds and bats have small genomes, but the cause was uncertain. Now researchers at the University of New Mexico have shown that the genome shrinks over evolutionary ...

Study reveals bird threat to U.S. military helicopters

Mar 03, 2014

Rotary-wing aircraft, such as Apache and Chinook helicopters, play vital combat and logistical roles across the U.S. military services, but new research in the Wildlife Society Bulletin reveals how vulnerable these aircraft ...

Bats inspire 'micro air vehicle' designs

Feb 18, 2014

By exploring how creatures in nature are able to fly by flapping their wings, Virginia Tech researchers hope to apply that knowledge toward designing small flying vehicles known as "micro air vehicles" with ...

Researchers build robotic bat wing (w/ video)

Feb 21, 2013

The strong, flapping flight of bats offers great possibilities for the design of small aircraft, among other applications. By building a robotic bat wing, Brown researchers have uncovered flight secrets of ...

BaTboT is up for imitating smart bat maneuvers

Jun 03, 2012

(Phys.org) -- Robotics researchers in Spain and the U.S. are studying bats for their design work on drones. Bat wings are highly articulated, with skeletons similar to those of human arms and hands. The researchers ...

Bats save energy by drawing in wings on upstroke: study

Apr 10, 2012

(Phys.org) -- Bat wings are like hands: meaty, bony and full of joints. A new Brown University study finds that bats take advantage of their flexibility by folding in their wings on the upstroke to save inertial ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jeffsaunders
not rated yet Sep 29, 2008
It has been quite difficult for bats to evolve a propeller or otherwise they would have done it.

More news stories

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.