Twisted Flux Tubes Expel 'Wrong-Way' Ions

Apr 06, 2007

Physicists seeking to tame plasma have figured out yet another of its wily ways. Knowing how plasma escapes the grip of magnetic fields may help researchers design better magnetic bottles to contain it. Magnetic confinement could be a crucial technology for electric power plants that harness nuclear fusion, the powerful process fueling the sun.

Metaphorically, it is hard to stop leaks when you haven't yet found them all, and three applied physicists at the California Institute of Technology identify a new leakage mechanism in the current issue of Physical Review Letters. Their model explains certain types of magnetic confinement degradation observed in the laboratory, and it may well be relevant to similar situations in the solar corona.

Nuclear fusion requires great energy to start, and it can release even more. At high energies, electrons are torn from atoms to make plasma, a gaseous mixture of electrons and ions. Although fusion-grade plasma is far too hot for solid walls to hold, a suitably arranged magnetic field can confine it, because electrons and ions are each subject to magnetic forces.

The solar corona provides a compelling example of plasma confinement by magnetic fields. Above the solar surface, magnetic fields sculpt plasma into vast glowing loops, which can last for weeks, only to burst in a violent spray of high-energy particles. Such sudden failures of magnetic confinement are not fully understood, but the Caltech physicists have modeled a process by which the magnetic fields presumed to confine plasmas may instead expel certain ions, under conditions they label "radially unstable motion" (RUM).

"My intuition wouldn't have predicted this effect," says Professor of Applied Physics Paul Bellan. "It's always been assumed that electrons and ions stay close to their magnetic field lines. The model wasn't easy because we had to change our thinking. You have to follow the mathematics and let that change your intuition."

The RUM model provides an explanation for mysterious phenomena previously observed in tokamaks. The tokamak is the configuration most likely to provide magnetic plasma confinement for industrial-scale fusion power generation. Like a twisted rope with ends spliced together, a tokamak is a plasma-filled, twisted magnetic flux tube that acts as a donut-shaped magnetic bottle. Through the plasma a very large electric current circles the donut hole, so that magnetohydrodynamic (MHD) forces confine the plasma within the flux tube.

One method for fueling tokamaks is to inject the plasma with energetic beams of neutral atoms, which quickly lose electrons to become energetic ions. Such ions escape much more quickly when they move against the direction of electric current than when they move along it. Because MHD does not distinguish between countermoving and comoving ions, MHD does not predict this behavior.

The RUM model shows that when an electric current flows along a flux tube, the associated magnetic field interacts with ion motion so that rapidly countermoving ions experience a significantly different energy landscape than other ions. Like flowing water, particles tend "downhill" toward regions of lower potential energy, remaining confined in energy valleys and flowing away from energy hills.

In a flux tube with a corkscrew-shaped magnetic field, the tube's center is an energy valley for comoving and slow countermoving ions, but seems uphill to fast countermoving ions, which accelerate outward and may be visible as an intense jet of plasma away from the tube. Such jets were observed experimentally before they were understood.

"We'd seen some hints of this right from the beginning," says Bellan. The effect is proportional to mass, so it is not as evident in hydrogen plasmas. "It was blatantly obvious in the argon experiment."

The researchers investigated this phenomenon in an experiment that simulated plasma-filled magnetic flux tubes looping through the solar corona. They applied high voltage between electrodes at opposite ends of a semicircular magnetic flux tube. This high voltage ionized argon gas to form plasma, which MHD forces concentrated into a bright arch about 20 centimeters long, like a solar coronal loop but a billion times smaller.

Doppler velocity measurements confirmed the existence of rapidly countermoving ions. The researchers varied the current, plasma density, and magnetic field to test the association between RUM and these fast "wrong-way" ions. They found their RUM onset prediction to be an excellent indicator for the loss of such ions from the magnetic flux loop through the resulting emission of plasma jets.

The authors of the paper, "Observation of Kinetic Plasma Jets in a Coronal-Loop Simulation Experiment," are Caltech postdoctoral fellow Shreekrishna Tripathi, who is now at UCLA, Paul Bellan, and Caltech graduate student in applied physics Gunsu Yun.

Source: Caltech

Explore further: Throwing light on a mysterious human 'superpower'

add to favorites email to friend print save as pdf

Related Stories

Peering into cosmic magnetic fields

Jan 22, 2015

The generation of cosmic magnetic fields has long intrigued astrophysicists. Since it was first described in 1959, a phenomenon known as Weibel filamentation instability—a plasma instability present in ...

Recommended for you

Throwing light on a mysterious human 'superpower'

2 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.