Honey, I shrunk the carbon nanotubes

Nov 14, 2006

U.S. scientists say they have developed a method of controllably altering the diameter of individual carbon nanotubes.

Alex Zettl and colleagues at the University of California, Berkeley and the Lawrence Berkeley National Laboratory say carbon nanotubes' ability to conduct electricity and other electrical and mechanical properties depends heavily on their size. However, current methods for making CNTs cannot reliably control nanotube diameter, making it more difficult to fabricate devices from nanotubes.

"We have developed a method to shrink individual nanotubes to any desired diameter," the researchers report. "The process can be repeated in a highly controlled fashion, yielding a high-quality CNT of any pre-selected and precise diameter."

The method, involving a high-temperature that shrinks regular-sized CNTs and reforms them into high-quality tubes of a smaller diameter, is to be detailed in the Dec. 13 issue of the journal Nano Letters.

Copyright 2006 by United Press International

Explore further: Engineered proteins stick like glue—even in water

add to favorites email to friend print save as pdf

Related Stories

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Catching greenhouse gases with advanced membranes

Sep 04, 2014

Researchers in Japan have engineered a membrane with advanced features capable of removing harmful greenhouse gases from the atmosphere. Their findings, published in the British journal Nature Communications, may on ...

Breakthrough for carbon nanotube solar cells

Sep 03, 2014

Lighter, more flexible, and cheaper than conventional solar-cell materials, carbon nanotubes (CNTs) have long shown promise for photovoltaics. But research stalled when CNTs proved to be inefficient, converting ...

Pentagonal nanorods show catalytic promise

Aug 13, 2014

Pentagonal nanorods have a unique morphology that confers interesting compositional and shape-dependent properties—including excellent stability and high catalytic activity—that make them excellent candidates ...

Recommended for you

Engineered proteins stick like glue—even in water

1 hour ago

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed new materials that ...

Smallest possible diamonds form ultra-thin nanothreads

1 hour ago

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

User comments : 0