Honey, I shrunk the carbon nanotubes

Nov 14, 2006

U.S. scientists say they have developed a method of controllably altering the diameter of individual carbon nanotubes.

Alex Zettl and colleagues at the University of California, Berkeley and the Lawrence Berkeley National Laboratory say carbon nanotubes' ability to conduct electricity and other electrical and mechanical properties depends heavily on their size. However, current methods for making CNTs cannot reliably control nanotube diameter, making it more difficult to fabricate devices from nanotubes.

"We have developed a method to shrink individual nanotubes to any desired diameter," the researchers report. "The process can be repeated in a highly controlled fashion, yielding a high-quality CNT of any pre-selected and precise diameter."

The method, involving a high-temperature that shrinks regular-sized CNTs and reforms them into high-quality tubes of a smaller diameter, is to be detailed in the Dec. 13 issue of the journal Nano Letters.

Copyright 2006 by United Press International

Explore further: Nanomaterials to preserve ancient works of art

add to favorites email to friend print save as pdf

Related Stories

Laser scanning accurately 'weighs' trees

Nov 21, 2014

A terrestrial laser scanning technique that allows the structure of vegetation to be 3D-mapped to the millimetre is more accurate in determining the biomass of trees and carbon stocks in forests than current ...

Measuring nano-vibrations

Nov 05, 2014

In a recent paper published in Nature Nanotechnology, Joel Moser and ICFO colleagues of the NanoOptoMechanics research group led by Prof. Adrian Bachtold, together with Marc Dykman (Michigan University), report ...

New insights on carbonic acid in water

Oct 22, 2014

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

Recommended for you

Nanomaterials to preserve ancient works of art

20 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

20 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.