Creating nanodevices for delivery of vaccines

Oct 27, 2006

A team of Yale biomedical engineers and cell biologists received a $1-million award from the National Science Foundation to develop "smart nanoparticles" for the delivery of vaccines.

Led by Tarek Fahmy, assistant professor of biomedical engineering, the team will apply the two-year, Nanoscale Interdisciplinary Research Team (NIRT) funding to develop a new class of nanomaterials with properties that mimic biological vectors like bacteria and viruses.

"While previous research has shown that safe, biocompatible materials can be engineered into nanoparticles that contain drugs or vaccines, we will develop new materials for vectors that interact specifically and predictably with cells," said Fahmy. "Our nanosystems will be designed to evade the normal barriers and stimulate antigen-presenting cells of the immune system."

The researchers propose to construct the "smart nanoparticle" vaccine delivery system using a simple, modular approach that can be easily modified to meet the requirements of any particular vaccine. They expect this approach to be safer and more effective than current methods of co-administering an adjuvant or delivering live attenuated or killed bacteria or viruses to amplify the immune response.

"We will specifically target antigen-presenting cells such as the dendritic cells that are uniquely responsible for initiating immune responses," said Ira Mellman, chair and Sterling Professor of Cell Biology. "Targeting antigens to dendritic cells is emerging as a powerful novel strategy for vaccination."

The researchers will also track the fate and biological activity of the "smart nanoparticles" in cultured dendritic cells (DCs), to optimize the fate of the internalized nanoparticles and the release of the encapsulated antigen.

Their approach promises flexibility for integrating different DC surface proteins, enabling optimal DC population targeting and priming, delivery of a wide variety of antigens of clinical importance, and assembly of different combinations of recognition and antigen modules for a broad-spectrum potent vaccine response.

Source: Yale University

Explore further: Team customizes nanoparticles to better transport therapeutic drugs

add to favorites email to friend print save as pdf

Related Stories

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

New nanogel for drug delivery

Feb 19, 2015

Scientists are interested in using gels to deliver drugs because they can be molded into specific shapes and designed to release their payload over a specified time period. However, current versions aren't ...

Golden vehicle for drug delivery has hidden costs

Feb 18, 2015

One of the biggest ideas in treating disease involves material so small it isn't even visible. Miniscule gold particles – the size of several atoms – are being touted as vehicles to send drugs exactly ...

Recommended for you

New nanodevice defeats drug resistance

Mar 02, 2015

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.