New X-Ray microbeam answers 20-year-old metals question

Aug 03, 2006
New X-Ray microbeam answers 20-year-old metals question
Novel 3-D microbeam experiment enables direct proof of the Mughrabi model of metal stress. Submicron X-ray beam (broad arrow) penetrates a deformed copper single crystal and is diffracted onto a CCD detector. Platinum wire profiler (circle) traverses the sample and successively intercepts diffracted X-rays, providing depth measurement and allowing strains to be measured from individual dislocation cells. Credit: NIST

What happens to metals when you bend them? The question isn't as easy as you may think. A research team from the National Institute of Standards and Technology, Oak Ridge National Laboratory, and the University of Southern California, using a unique X-ray probe, has gathered the first direct evidence showing that, on average, a 20-year-old model is a useful predictor of stresses and strains in deformed metal.

But the measurements also show that averages can be deceiving. They mask extremely large variations in stresses that, until now, had gone on undetected. The experiments have implications for important practical problems in sheet metal forming and control of metal fatigue, which is responsible for many structural materials failures.

When metals deform, the neat crystal structure breaks into a complex three-dimensional web of crystal defects called "dislocation walls" that enclose cells of dislocation-free material. The effect is like micron-sized bubbles in foam. These complex dislocation structures are directly responsible for the mechanical properties of virtually all metals, and yet they remain very poorly understood in spite of decades of research. Twenty years ago, the German researcher Hдel Mughrabi theorized that the stresses in the dislocation walls and the cell interiors would be different and have opposite signs--an important result for modeling the effects of shaping and working metal on its properties. Until now there has only been indirect evidence for Mughrabi's model because of the problem of precisely measuring stress at the micron level in individual cells in the dislocation structure.

At that level, in fact, stresses can vary greatly. "Scientifically, these stress fluctuations are probably the single most significant finding of the work since no previous measurements even hinted at their existence," explains NIST physicist and lead author Lyle Levine. "A few researchers had speculated that such variations might exist but they had no clue about their size and distribution."

The NIST/ORNL/USC team used intense X-ray microbeams--100 times thinner than a human hair--generated at the Advanced Photon Source at Argonne National Laboratory to scan samples of single-crystal copper that had been deliberately stressed. The diffracted X-rays revealed the local crystal lattice spacing, a measure of stress, at each point. As this happens, a thin platinum wire is moved across the face of the crystal. By noting which diffracted rays are blocked by the wire at which point, the team calculated the depth of the region diffracting the beam. They determined cell positions in three dimensions to within half a micron.

The experiments on both compressed and tensioned copper crystals agreed with Mughrabi's model. "One big advantage to this method is that the results are completely definitive. We can make unambiguous, quantitative measurements from the submicron sample volumes most pertinent to metals deformation," Levine says.

The new technique opens a detailed window into the microstructure of stress in metals and provides quantitative data to support computer models of mechanical stress. The research was supported by NIST and the Department of Energy.

Citation: L.E. Levine, B.C. Larson, W. Yang, M.E. Kassner, J.Z. Tischler, M.A. Delos-Reyes, R.J. Fields, and W. Liu. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper. Nature Materials, 5, 619-622 (2006)

Source: NIST

Explore further: Faster switching helps ferroelectrics become viable replacement for transistors

add to favorites email to friend print save as pdf

Related Stories

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

Earth's mantle plasticity explained

Mar 07, 2014

Earth's mantle is a solid layer that undergoes slow, continuous convective motion. But how do these rocks deform, thus making such motion possible, given that minerals such as olivine (the main constituent ...

Nanocrystals not small enough to avoid defects

Dec 14, 2012

(Phys.org)—Nanocrystals as protective coatings for advanced gas turbine and jet engines are receiving a lot of attention for their many advantageous mechanical properties, including their resistance to ...

Recommended for you

A new generation of storage—ring

3 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Flying qubits make for a highly resilient quantum memory

5 hours ago

(Phys.org) —In a quantum memory, the basic unit of data storage is the qubit. Because a qubit can exist in a superposition state of both "1" and "0" at the same time, it can process much more information ...

Universe may face a darker future

7 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.