Brookhaven Lab wins R&D 100 Award for X-ray focusing device

Jul 26, 2006

The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has won a 2006 R&D 100 award for developing the first device able to focus a large spread of high-energy x-rays. The device, called a Sagittal Focusing Laue Monochromator, could be used in about 100 beamline facilities around the world to conduct scientific research in physics, biology, nanotechnology, and numerous other fields.

R&D 100 Awards are given annually by R&D Magazine to the top 100 technological achievements of the year. Typically, these are innovations that transform basic science into useful products. The awards will be presented in Chicago on October 19.

Brookhaven's National Synchrotron Light Source (NSLS) physicist Zhong Zhong led the development of the focusing device with help from BNL scientists Chi-Chang Kao, Peter Siddons, Hui Zhong, Jonathan Hanson, Steven Hulbert, Dean Connor and Christopher Parham; BNL technicians Anthony Lenhard, Shu Cheung, and Richard Greene; and former BNL scientist Jerome Hastings, who is now working at the Stanford Linear Accelerator Center.

"I congratulate the researchers who have won this award, which highlights the power and promise of DOE's investments in science and technology," Secretary of Energy Samuel W. Bodman said about the BNL team. "Through the efforts of dedicated and innovative scientists and engineers at our national laboratories, DOE is helping to enhance our nation's energy, economic and national security."

As x-rays are produced at light sources, they spread out, or diverge. X-rays produced by a beamline with a 5 milliradian divergence, for example, will spread to 5 millimeters (mm) by the time they are 1 meter away from their source, and to 50 mm when 10 meters away. This is a problem for light source scientists, who want the highest possible x-ray flux on a small spot, which requires a well-focused beam.

Previous x-ray focusing technologies relied on mirror-like surface reflections, but this required large surfaces and caused technical difficulties in error control and limitations on the energy of the x-rays that could be focused. The device developed by Zhong's team, however, doesn't rely on a crystal surface to reflect the beam. Instead, it sends the x-rays directly through a set of silicon Laue crystals, named for German physicist Max von Laue. The result is a 1,000-fold increase in beam intensity, as well as high-energy resolution, reduced costs and ease of operation, Zhong said.

The device consists of two thin bent crystals mounted on a slide, with the first one diffracting upward and the second one diffracting downward to focus the beam horizontally. It is the first device that can focus a large divergence of high-energy x-rays, handling a beamline with a divergence as great as 20 milliradian.

"This is a very elegant solution to an existing problem," said Zhong, who started working on the project in 2001. The first version of the device is installed at the NSLS beamline X17B1 and is gaining interest from members of other Brookhaven beamlines and scientists at light sources around the world. Development of the award-winning device was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.

Source: Brookhaven National Laboratory

Explore further: New theory predicts magnets may act as wireless cooling agents.

add to favorites email to friend print save as pdf

Related Stories

Comet Jacques makes a 'questionable' appearance

20 minutes ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Australia approves huge India-backed mine

23 minutes ago

Australia has given the go-ahead to a massive coal mine in Queensland state which Environment Minister Greg Hunt said Monday could ultimately provide electricity for up to 100 million Indians.

Image: Our flocculent neighbour, the spiral galaxy M33

29 minutes ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Recommended for you

Timely arrival of Pharao space clock

1 hour ago

ESA has welcomed the arrival of Pharao, an important part of ESA's atomic clock experiment that will be attached to the International Space Station in 2016.

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

User comments : 0