Nano World: Chemical sensing transistors

Jul 22, 2006

Hybrid transistors using stacks of organic molecules for wires and carbon nanotubes as electrodes could serve as ultrasensitive sensors for explosives and other compounds, experts told UPI's Nano World.

Scientists are working to incorporate sensor elements only nanometers or billionths of a meter large into electronics because such elements are extraordinarily sensitive to whatever they are meant to detect. The problem lies with the materials these nanoscale ingredients are often linked with, said researcher Colin Nuckolls, an organic chemist at Columbia University in New York.

Conventional electronics made with silicon and other semiconductors spontaneously develop an oxide layer that renders them less sensitive to their environment. On the other hand, organic electronics are comprised of many layers of materials, making them relatively insensitive, and can only work with air because they can dissolve and degrade in liquid, Nuckolls said.

Nuckolls and his colleagues employed organic compounds known as polycyclic aromatic hydrocarbons that can both serve as sensor elements and can assemble themselves into layers only a molecule high. The researchers laid out these compounds between gaps a few molecules wide etched into single-walled carbon tubes a nanometer or two in diameter. The organic molecules and the carbon nanotubes rest on a silicon foundation.

This extreme thinness of the organic molecule layer makes it "very sensitive to their environment" compared with sensors based on conventional organic electronics, which possess many organic molecule layers because with the methods typically used to make conventional organic electronics, "there is no way to limit the number of molecules that come down on the surface," Nuckolls said.

The tiny gaps in the carbon nanotubes these organic molecules lie in are key to the success of the sensors. If the gaps are too large, defects can develop that can ruin the performance of the devices. The carbon nanotubes are necessary because they can form stable connections with the organic molecules. Past molecular electronics that did not use carbon nanotubes as electrodes often had poor contact between organic molecules and their electrodes, resulting from the size mismatch between the organic molecules and these far larger electrodes.

These devices "should allow the detection of very small amounts" of TNT and other explosives," Nuckolls said. Nuckolls and his colleagues reported their findings online this week via the Proceedings of the National Academy of Sciences.

"We are trying to create the prototypes of the devices for detection of explosives and are working to incorporate them into CMOS," Nuckolls said. Microchips based on CMOS, or complementary metal-oxide-semiconductor, nowadays comprise the vast majority of chip manufacturing in terms of dollar amounts. The hope is to "integrate these sensors into chips" and read out results using personal computers, he added.

Copyright 2006 by United Press International

Explore further: Graphene imperfections key to creating hypersensitive 'electronic nose'

add to favorites email to friend print save as pdf

Related Stories

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

Team improves solar-cell efficiency

Sep 19, 2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Unforeseen dioxin formation in waste incineration

Sep 18, 2014

Dioxins forms faster, at lower temperatures and under other conditions than previously thought. This may affect how we in the future construct sampling equipment, flue gas filtering systems for waste incineration ...

Future of energy storage

Sep 16, 2014

MIT professor Fikile Brushett is in the process of taking the power generated by wind and solar, chemically lashing it to molecules derived from flora and fauna, and storing it in liquids until it's needed ...

Recommended for you

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

User comments : 0