Blood-Compatible Nanoscale Materials Possible Using Heparin

May 04, 2006
Blood-Compatible Nanoscale Materials Possible Using Heparin

Researchers from Rensselaer Polytechnic Institute have engineered nanoscale materials that are blood compatible using heparin, an anticoagulant. The heparin biomaterials have potential for use as medical devices and in medical treatments such as kidney dialysis.

The researchers prepared several materials with heparin composites or coatings, including carbon nanotubes, nanofibers, and membranes with nanosized pores, and then demonstrated the materials’ high compatibility with blood. Heparin is a common therapeutic used to maintain blood flow or prevent clotting during medical procedures and treatments.

The researchers demonstrated the composite heparin membrane with nanopores could work as an artificial kidney, or dialyzer, by filtering the blood and maintaining its flow. The presence of this blood-compatible dialyzer could potentially eliminate the need for systemic administration of heparin to the patient during kidney dialysis, the researchers say.

The heparin-coated membranes are described in a paper titled “Ionic Liquid-Derived Blood Compatible Membranes for Kidney Dialysis,” published online Apr. 24 in advance of print in the Journal of Biomedical Materials Research.

“These heparin composite membranes and fibers and coated carbon nanotubes are an enabling technology,” says Saravanababu Murugesan, a recent doctoral graduate in chemical and biological engineering at Rensselaer and lead author of the paper. “Our results show these novel materials have great promise in the development of improved medical devices that are blood compatible.”

The research team is led by Robert Linhardt, the Ann and John H. Broadbent Jr. ’59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer, and includes collaboration with Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering, and Omkaram “Om” Nalamasu, professor of materials science and engineering, at Rensselaer. Additional co-authors of the paper are Shaker Mousa, director of the Pharmaceutical Research Institute at Albany College of Pharmacy, and Aravind Vijayaraghavan, a recent doctoral graduate in materials science and engineering at Rensselaer. Funding for this research was provided by the National Institutes of Health.

Recent results related to this work have been published online in the journals Langmuir (“Blood Compatible Nanotubes – Nano-based Neoproteoglycans,” Mar. 11, 2006) and Biomacromolecules (“Preparation of Biopolymer Fibers by Electrospinning from Room Temperature Ionic Liquids,” Jan. 26, 2006). Provisional patents have been filed by Rensselaer Polytechnic Institute.

Research in Linhardt’s group at the Center for Biotechnology and Interdisciplinary Studies at Rensselaer focuses on complex carbohydrates such as heparin. After determining the structure of these molecules, researchers study their biological activities to establish a structure-activity relationship that may reveal lead compounds for new drug development. Recent discoveries include a synthetic method for preparation of heparin in quantities large enough for use in medical treatment.

Source: Rensselaer Polytechnic Institute

Explore further: Ultra-small block 'M' illustrates big ideas in drug delivery

add to favorites email to friend print save as pdf

Related Stories

Spacewalking astronauts finish extensive, trick cable job

1 hour ago

(AP)—Spacewalking astronauts successfully completed a three-day cable job outside the International Space Station on Sunday, routing several-hundred feet of power and data lines for new crew capsules commissioned ...

IOC defends Rio legacy amid green protests

4 hours ago

Ecological protests on Saturday dogged the final day of an International Olympic Committee executive board meeting in Rio as green campaigners slated the choice of a nature reserve to hold the golf event ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.