Webb Telescope sunshield passes launch depressurization tests to verify flight design

Oct 08, 2010
Northrop Grumman lead venting analyst Dan McGregor with a sunshield test article as it is placed in the vacuum chamber at Aerospace Systems' test facility in Redondo Beach, Calif. Credit: Northrop Grumman Aerospace Systems

NASA's James Webb Space Telescope continues to make significant progress, successfully completing a series of sunshield vent tests that validate the telescope's sunshield design.

"While adequate venting is a design consideration for all spaceflight hardware, this was a particularly unique challenge for the sunshield given the large volume of trapped air in the membrane system at launch," said Keith Parrish, Webb sunshield manager at NASA's Goddard Space Flight Center in Greenbelt, Md. "From the beginning of its development venting features have been a critical part of the overall sunshield design. Since we cannot vent test the actual flight article these test have shown the design works and the sunshield will vent safely on its way to orbit."

The sunshield on the Webb telescope will block the heat of the Sun and Earth from reaching the cold section of the . That's a critical function because the telescope and instruments must be cooled below 50 Kelvin (~-369.7 Fahrenheit) to allow them to see faint infrared emissions from . The sunshield consists of five layers of Kapton ®E with aluminum and doped-silicon coatings to reflect the sun's heat back into space.

Using flight-like sunshield membranes, the tests are designed to mimic the rapid change in air pressure the folded sunshield will experience the first minutes of launch. Several different folding configurations each underwent a series of 90-second depressurization tests and proved that the stowed sunshield will retain its shape during launch and allow trapped air to escape safely, both critical to sunshield deployment and performance.

Northrop Grumman lead venting analyst Dan McGregor inspects a sunshield test article for the sunshield section on top of the spacecraft around the tower that supports the telescope. Credit: Northrop Grumman Aerospace Systems.

Northrop Grumman Corporation is leading Webb's design and development effort for NASA's Goddard Space Flight Center in Greenbelt, Md. The first tests were conducted the last week of August in vacuum chambers at Northrop Grumman Aerospace Systems' Redondo Beach facility. Another series of complementary tests were completed in October where air was injected into the stowed sunshield test article, and that provided more detailed data used in evaluating analytical models.

"This is another significant risk reduction activity that continues to move sunshield development forward," said Scott Willoughby, Webb Telescope program manager for Northrop Grumman Aerospace Systems. "We have demonstrated the effectiveness of our sunshield vent design."

Three critical full-scale sections of the sunshield were tested: the section on top of the spacecraft around the tower that supports the telescope; the vertical pallet structure that contains the folded sunshield membranes, and the intervening four-bar linkage area that is folded in an inverted V-shape. The flow paths are complex and the sunshield material, a tough plastic film, Kapton ®E, is only one to two thousandths of an inch thick and covers a surface area the size of a tennis court.

Explore further: SDO captures images of two mid-level flares

More information: www.jwst.nasa.gov/

add to favorites email to friend print save as pdf

Related Stories

Webb Telescope Passes Mission Milestone

Apr 28, 2010

(PhysOrg.com) -- NASA's James Webb Space Telescope has passed its most significant mission milestone to date, the Mission Critical Design Review, or MCDR. This signifies the integrated observatory will meet ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.