Scientists trick bacteria with small molecules

Oct 07, 2010
Scientists tricked the Staphylococcus aureus bacteria into incorporating engineered small molecules into its cell wall. (Image: Wikimedia Commons)

(PhysOrg.com) -- A team of Yale University scientists has engineered the cell wall of the Staphylococcus aureus bacteria, tricking it into incorporating foreign small molecules and embedding them within the cell wall.

The finding, described online in the journal ACS this week, represents the first time scientists have engineered the cell wall of a pathogenic “Gram-positive” bacteria—organisms responsible not only for Staph infections but also pneumonia, strep throat and many others. The discovery could pave the way for new methods of combating the bacteria responsible for many of the most infectious diseases.

The team engineered one end of their small to contain a peptide sequence that would be recognized by the bacteria. In , an enzyme called sortase A is responsible for attaching proteins to the cell wall.

“We sort of tricked the bacteria into incorporating something into its cell wall that it didn’t actually make,” said David Spiegel, a Yale chemist who led the study. “It’s as if the cell thought the molecules were its own proteins rather than recognizing them as something foreign.”

The scientists focused specifically on the cell wall because it contains many of the components the cell uses to relate to its environment, Spiegel said. “By being able to manipulate the cell wall, we can in theory perturb the bacteria’s ability to interact with human tissues and host cells.”

The team used three different small molecules in their experiment — including biotin, fluorescein and azide — but the technique could be used with other molecules, Spiegel said, as well as with other types of bacteria. Another advantage to the new technique is that the scientists did not have to first genetically modify the bacteria in any way in order for them to incorporate the small molecules, meaning the method should work on naturally occurring bacteria in the human body.

Staph infections, such as the drug-resistant MRSA, have plagued hospitals in recent years. More Americans die each year from Staphylococcus aureus infections alone than from HIV/AIDS, Parkinson’s disease or emphysema.

Being able to engineer the cell walls of not only Staphylococcus aureus but a whole family of bacteria could have widespread use in combating these illnesses, Spiegel said, adding that any number of could be used with their technique. “For example, if we tag these with small fluorescent tracer molecules, we could watch the progression of disease in the human body in real time.” The molecules could also be used to help recruit antibodies that occur naturally in the bloodstream, boosting the body’s own immune response to diseases that tend to go undetected, such as HIV/AIDS or cancer.

“This technique has the potential to help illuminate basic biological processes as well as lead to novel therapeutics from some of the most common and deadly diseases affecting us today,” Spiegel said.

Explore further: Dead feeder cells support stem cell growth

More information: Research paper: DOI: 10.1021/cb100195d

Related Stories

Bacteria build walls to withstand antibiotics

Nov 01, 2005

Antibiotic resistant bacteria, which are proliferating in hospitals and causing major headaches for physicians, cheat death by finding ways to fortify their cell walls against the deadly drugs. The question is: how? New res ...

'Surprising link' leads toward a new antibiotic

May 28, 2009

(PhysOrg.com) -- As the best drugs become increasingly resistant to superbugs, McMaster University researchers have discovered a completely different way of looking for a new antibiotic.

Broken bones and medication

Oct 05, 2010

Although one in four women over 50 develops osteoporosis, most are unaware they have the disease — something Professor Suzanne Cadarette would like to change.

Newly engineered enzyme is a powerful staph antibiotic

Feb 08, 2010

(PhysOrg.com) -- In the past decade, methicillin-resistant Staphylococcus aureus, or MRSA, has ushered in a new era in the fight between man and bug. By harnessing the power of nature’s own antibiotics, scientists have ...

New weapon against highly resistant microbes within grasp

May 27, 2010

An active compound from fungi and lower animals may well be suitable as an effective weapon against dangerous bacteria. We're talking about plectasin, a small protein molecule that can even destroy highly resistant bacteria. ...

Study unveils lifeline for 'antibiotic of last resort'

Apr 11, 2010

A new study led by the scientific director of the Michael G. DeGroote Institute for Infectious Disease Research has uncovered for the first time how bacteria recognize and develop resistance to a powerful antibiotic used ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.