Jellyfish protein could be used to power nanodevices

Oct 07, 2010 by Lin Edwards report
Aequorea victoria. Image credit: Sierra Blakely/Wikipedia.

(PhysOrg.com) -- Researchers in Sweden have been liquidizing thousands of specimens of a common North American jellyfish to extract a protein that could be used in microscopic fuel cells.

The jellyfish (Aequorea Victoria) contain a green fluorescent protein (GFP) that makes them glow in the dark, and a research team led by Zackary Chiragwandi from the Chalmers University of Technology in Gothenburg, Sweden, has been extracting the protein and using it to create a bio fuel cell. When a droplet of the protein is placed onto aluminum electrodes and then exposed to ultraviolet light an is generated at a nanoscale suitable for powering "nanodevices".

Nanodevices are devices measured in , where one nanometer is a billionth of one meter. Their use in medicine is in its infancy, and one of the chief difficulties in working with nanoscale devices is powering them.

Chiragwandi has also used his fuel cell with light-emitting enzymes derived from fireflies and sea pansies (Renilla reniformis) that create their own , making the completely self-contained.

In other research, methods have been developed to grow artificial in the laboratory using bacteria, and if successful this would create the GFP without the need to harvest and liquefy large numbers of jellyfish.

Other light-powered cells, such as Grätzel cells (which mimic plant photosynthesis), use elements such as titanium oxide, which make them a much more expensive option for powering nanodevices. Since the protein fuel cells can also generate their own light, no outside source of light is needed, making the process simpler and more efficient.

Chiragwandi says the fuel cells could be used to independently power nanodevices operating in the human body for applications such as fighting or imaging tumors, medical diagnosis, communication devices, or perhaps even reversing blindness. If scaled up they could also be used like thin films to make cheaper solar cells. The technology could become available within one or two years.

Explore further: New tool identifies therapeutic proteins in a 'snap'

Related Stories

Sea coral's trick helps scientists tag proteins

Mar 19, 2006

The glow emitted by a variety of sea coral helped Russian scientists harness the protein that generates the light to create a tiny fluorescent tag that responds to visible light. The two-color tag should help researchers ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0