Horizontal gene transfer in microbes much more frequent than previoulsy thought

Oct 04, 2010 by Lin Edwards report
A. TEMs of GTA particles of Roseovarius nubinhibens ISM (bar = 20 nm). B. TEMs of GTAs produced by Reugeria mobilis 45A6 (bar = 50 nm). Image credit: Science , DOI:10.1126/science.1192243

(PhysOrg.com) -- A new study suggests that genes are transferred from one micro-organism to another up to a hundred million times more frequently than previously thought.

Virus-like particles called gene transfer agents (GTAs) are produced by alpha-proteobacteria and pass from one microbe to another, taking random pieces of up to 1,000 bases long with them. The high frequency with which this has been found to occur may provide a mechanism by which bacteria in the oceans acquire novel traits, and may play an important role in evolutionary processes.

One of the researchers, marine microbiologist John Paul, of the University of South Florida College of Marine Science in St Petersburg, said scientists had known “there’s a lot of gene shuffling going on in bacteria,” but until now no one had found a plausible mechanism for this (as opposed to transfer of down the generations).

The existence of GTAs has been known since their discovery in 1974, but until now they were considered merely curiosities or laboratory anomalies. In the laboratory bacteria only produce GTAs in their “stationary phase”, which occurs when they are under stress through crowding, waste buildup and so on. The extent to which they play a part in nature outside of the laboratory was previously unkown, but they have been found in most members of the alpha-proteobacteria.

The team led by Paul first genetically engineered GTAs in two species of alpha-proteobacteria to contain a set of genes that conferred . They stressed the bacteria to initiate the stationary phase, and then filtered out and purified the GTAs.

They then sealed the GTAs in bags of seawater drawn from a variety of coastal environments in Florida and the . The water samples were teeming with alpha-proteobacteria and other . The bags were then floated in the ocean to simulate natural conditions. After incubation in antibiotics overnight, the various kinds of bacteria surviving in the samples were examined and genetically sequenced. The researchers found up to 47% percent of the naturally occurring bacteria had incorporated the GTAs and their genetic contents into their own genomes.

Lauren McDaniel, one of the co-authors of the paper said they were “absolutely amazed to see exact matches for the genes we put into the donor strain in different genera…” There are other means of horizontal gene transfer, such as cell to cell contact, by plasmids (mobile genetic elements) or by bacterial viruses, but these were unlikely to produce the results found.

The paper, published in the journal Science may help explain how bacteria can rapidly adapt to change, and quickly become resistant to antibiotics. Genes spread horizontally to other can lead to an increase in the frequency of those genes if they are beneficial and lead to better chances of survival.

Explore further: Japan lab cannot repeat ground-breaking cell finding: reports

More information: High Frequency of Horizontal Gene Transfer in the Oceans, Lauren D. McDaniel et al. Science 1 October 2010: Vol. 330. no. 6000, p. 5. DOI:10.1126/science.1192243

Related Stories

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Stealth technology maintains fitness after sex

Jan 12, 2007

Pathogens can become superbugs without their even knowing it, research published today in Science shows. 'Stealth' plasmids - circular 'DNA parasites' of bacteria that can carry antibiotic-resistance genes - produce a prot ...

Aphids borrowed bacterial genes to play host

Mar 09, 2009

Most aphids host mutualistic bacteria, Buchnera aphidicola, which live inside specialized cells called bacteriocytes. Buchnera are vital to the aphids well being as they provide essential amino acids that are scarce in its ...

Recommended for you

'Hairclip' protein mechanism explained

46 minutes ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Discovery in the fight against antibiotic-resistant bacteria

2 hours ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

2 hours ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.