Physicists cross hurdle in quantum manipulation of matter

Sep 17, 2010
Spins of nitrogen-vacancy centers in diamond (represented on the center photo as bright spots and denoted as the orange arrow on the figure to the left) interact with a bath of environmental spins (denoted as green arrows). The environmental spins interact with the N-V spins, and destroy their fragile quantum state. By applying a specially designed sequence with more and more pulses, the lifetime of the quantum spin state can be significantly extended (as shown in the figure at right). Credit: Institute of Nanosciences at Delft University of Technology & U.S. Department of Energy's Ames Laboratory

Finding ways to control matter at the level of single atoms and electrons fascinates many scientists and engineers because the ability to manipulate single charges and single magnetic moments (spins) may help researchers penetrate deep into the mysteries of quantum mechanics and modern solid-state physics. It may also allow development of new, highly sensitive magnetometers with nanometer resolution, single-spin transistors for coherent spintronics, and solid-state devices for quantum information processing.

Recently, a collaboration of experimentalists from the Kavli Institute of Nanosciences at Delft University of Technology and theorists at the U.S. Department of Energy's Ames Laboratory made a breakthrough in the area of controlling single quantum spins. The results were published in on Sept. 9

The researchers developed and implemented a special kind of quantum control over a single quantum magnetic moment (spin) of an atomic-sized impurity in diamond. These impurities, called nitrogen-vacancy (or N-V) centers, have attracted much attention due to their unusual magnetic and optical properties. But their fragile quantum states are easily destroyed by even miniscule interactions with the outside world.

By applying a specially designed sequence of high-precision electromagnetic pulses, the scientists were able to protect the arbitrary of a single spin, and they made the spin evolve as if it was completely decoupled from the outside world. In this way, scientists achieved a 25-fold increase in the lifetime of the quantum spin state at room temperature. This is the first demonstration of a universal dynamical decoupling realized on a single solid state quantum spin.

"Uncontrolled interactions of the spins with the environment have been the major hurdle for implementing quantum technologies" said the leader of Dutch experimental group, associate professor Ronald Hanson from Kavli Institute of at Delft. "Our results demonstrate that this hurdle can be overcome by advanced control of the spin itself."

"Implementing dynamical decoupling on a single quantum in solid state at room temperature has been an appealing but distant goal for quite a while. In the meantime, much theoretical and experimental knowledge has been accumulated in the community," added Viatcheslav Dobrovitski, who led the theoretical research effort at the Ames Laboratory. "We used this knowledge to design our pulse sequences, and the collaboration between theory and experiment greatly helped us in this work."

Besides its importance to fundamental understanding of , the team's achievement opens a way to using the impurity centers in diamond as highly sensitive nanoscale magnetic sensors, and potentially, as qubits for larger-scale .

Explore further: Physicists provide new insights into the world of quantum materials

Related Stories

Dark spins light up

Oct 25, 2005

Want to see a diamond? Forget the jewellery store - try a physics laboratory. In the November issue of Nature Physics, Ryan Epstein and colleagues demonstrate the power of their microscope for imaging individual nitrogen ...

Turning down the noise in quantum data storage

Jan 19, 2010

Researchers who hope to create quantum computers are currently investigating various methods to store data. Nitrogen atoms embedded in diamond show promise for encoding quantum bits (qubits), but the process ...

Putting a new spin on current research

Nov 15, 2008

Physicists in the USA and at the London Centre for Nanotechnology have found a way to extend the quantum lifetime of electrons by more than 5,000 per cent, as reported in this week's Physical Review Letters. Electr ...

12-qubits reached in quantum information quest

May 08, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed ...

Recommended for you

How Paramecium protozoa claw their way to the top

18 hours ago

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

JRDarby
5 / 5 (5) Sep 17, 2010
Actually, this makes sense. When you consider the implications of dense aether theory, you will see that...

/sarcasm off

But on the serious side, fascinating stuff.
holoman
not rated yet Sep 17, 2010
U.S. Patents, # 6,028,835 2/22/00 and # 6,046,973 4/4/00
Twix
Sep 17, 2010
This comment has been removed by a moderator.
Philip_Cunningham
Sep 18, 2010
This comment has been removed by a moderator.