New study examines how bacteria acquire immunity

Sep 15, 2010

In a new study this week, Rice University scientists bring the latest tools of computational biology to bear in examining how the processes of natural selection and evolution influence the way bacteria acquire immunity from disease.

The study is available online from . It builds upon one of the major discoveries made possible by in the past decade -- the revelation that bacteria and similar single-celled organisms have an acquired immune system.

"From a purely scientific perspective, this research is teaching us things we couldn't have imagined just a few years ago, but there's an applied interest in this work as well," said Michael Deem, the John W. Cox Professor in Biochemical and and professor of physics and astronomy at Rice. "It is believed, for instance, that the bacterial immune system uses a process akin to to silence the disease genes it recognizes, and biotechnology companies may find it useful to develop this as a tool for silencing particular genes."

The new study by Deem and graduate student Jiankui He focused on a portion of the bacterial genome called the "CRISPR," which stands for "clustered regularly interspaced short palindromic repeats." The CRISPR contain two types of . One type -- short, repeating patterns that first attracted scientific interest -- is what led to the CRISPR name. But scientists more recently learned that the second type -- originally thought of as DNA "spacers" between the repeats -- is what the organism uses to recognize disease.

"Bacteria get attacked by viruses called phages, and the CRISPR contain genetic sequences from phages," Deem said. "The CRISPR system is both inheritable and programmable, meaning that some sequences may be there when the organism is first created, and new ones may also be added when new phages attack the organism during its life cycle."

The repeating sequences appear to be a kind of bookend or flag that the organism uses to determine where a snippet from a phage begins and ends. The CRISPR will often have between 30 and 50 of these snippets of phage sequences. Previous studies have found that once a bacteria has a phage sequence in its CRISPR, it has the ability to degrade any DNA or RNA that match that sequence -- meaning it can fend off attacks from any phages that have genes matching those in its CRISPR.

"What we wanted to explore was how the history of a bacterium's exposure to phages influences what's in the CRISPR," Deem said. "In other words, how is an organism's previous exposure to viruses reflected in its own genome?"

From earlier published studies, Deem and He knew that phage sequences were added to the CRISPR sequentially. So, in a CRISPR system containing 30 snippets, the newest one would be in position one, at the front of the line. In another study in 2007, researchers examining the CRISPR of whole populations of bacteria noticed some statistical irregularities. They found that the likelihood of two different organisms having the same snippet in their CRISPR increased exponentially as they progressed away from position one. So, in the organism with 30 snippets, the phage gene in position 30 was the most likely to be conserved time and again across all the bacteria in the population.

To use the power of computers to examine why this happens, Deem and He needed a mathematical description of what was happening over time to both the bacterial and phage populations. The equations they created reflect the way the bacterial and phage populations interact via the CRISPR.

"Each population is trying to expand, and selective pressure is constantly being applied on both sides," Deem said. "You can see how this plays out in the CRISPR over time. There's a diverse assortment of genes in the first spacer, but the second spacer has been in there longer, so there's been more selective pressure applied to that spacer. Because bacteria that contain the dominant viral strain in their CRISPR are more likely to survive than those that don't, they tend to squeeze out their neighbors that are more vulnerable. At position N, the farthest way from position one, selection has been at work the longest, so the genes we find there were the most common and the ones that tended to afford the most overall protection to the organism."

In addition to interest from biotechnology firms, Deem said the workings of the CRISPR are of interest to drugmakers who are investigating new types of antibiotics.

Explore further: Top Japan lab dismisses ground-breaking stem cell study

Related Stories

Flu jab for bacteria

Mar 31, 2010

Viruses can wreak havoc on bacteria as well as humans and, just like us, bacteria have their own defence system in place, explains Professor John van der Oost, at the Society for General Microbiology's spring ...

Scientists identify key enzyme in microbial immune system

Sep 09, 2010

Imagine a war in which you are vastly outnumbered by an enemy that is utterly relentless - attacking you is all it does. The intro to another Terminator movie? No, just another day for microbes such as bacteria ...

Researchers Examine How Viruses Destroy Bacteria

Nov 18, 2009

Viruses are well known for attacking humans and animals, but some viruses instead attack bacteria. Texas A&M University researchers are exploring how hungry viruses, armed with transformer-like weapons, attack bacteria, which ...

New viruses to treat bacterial diseases

Sep 03, 2007

Viruses found in the River Cam in Cambridge, famous as a haunt of students in their punts on long, lazy summer days, could become the next generation of antibiotics, according to scientists speaking today at the Society for ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

7 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.